3.6.24 \(\int \frac {e-2 f x^2}{e^2+4 d f x^2+4 e f x^2+4 f^2 x^4} \, dx\) [524]

Optimal. Leaf size=81 \[ -\frac {\log \left (e-2 \sqrt {-d} \sqrt {f} x+2 f x^2\right )}{4 \sqrt {-d} \sqrt {f}}+\frac {\log \left (e+2 \sqrt {-d} \sqrt {f} x+2 f x^2\right )}{4 \sqrt {-d} \sqrt {f}} \]

[Out]

-1/4*ln(e+2*f*x^2-2*x*(-d)^(1/2)*f^(1/2))/(-d)^(1/2)/f^(1/2)+1/4*ln(e+2*f*x^2+2*x*(-d)^(1/2)*f^(1/2))/(-d)^(1/
2)/f^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {6, 1178, 642} \begin {gather*} \frac {\log \left (2 \sqrt {-d} \sqrt {f} x+e+2 f x^2\right )}{4 \sqrt {-d} \sqrt {f}}-\frac {\log \left (-2 \sqrt {-d} \sqrt {f} x+e+2 f x^2\right )}{4 \sqrt {-d} \sqrt {f}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e - 2*f*x^2)/(e^2 + 4*d*f*x^2 + 4*e*f*x^2 + 4*f^2*x^4),x]

[Out]

-1/4*Log[e - 2*Sqrt[-d]*Sqrt[f]*x + 2*f*x^2]/(Sqrt[-d]*Sqrt[f]) + Log[e + 2*Sqrt[-d]*Sqrt[f]*x + 2*f*x^2]/(4*S
qrt[-d]*Sqrt[f])

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1178

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e) - b/c, 2]},
 Dist[e/(2*c*q), Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x
 - x^2, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] &&  !GtQ[b^2
- 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {e-2 f x^2}{e^2+4 d f x^2+4 e f x^2+4 f^2 x^4} \, dx &=\int \frac {e-2 f x^2}{e^2+4 (d+e) f x^2+4 f^2 x^4} \, dx\\ &=-\frac {\int \frac {\frac {\sqrt {-d}}{\sqrt {f}}+2 x}{-\frac {e}{2 f}-\frac {\sqrt {-d} x}{\sqrt {f}}-x^2} \, dx}{4 \sqrt {-d} \sqrt {f}}-\frac {\int \frac {\frac {\sqrt {-d}}{\sqrt {f}}-2 x}{-\frac {e}{2 f}+\frac {\sqrt {-d} x}{\sqrt {f}}-x^2} \, dx}{4 \sqrt {-d} \sqrt {f}}\\ &=-\frac {\log \left (e-2 \sqrt {-d} \sqrt {f} x+2 f x^2\right )}{4 \sqrt {-d} \sqrt {f}}+\frac {\log \left (e+2 \sqrt {-d} \sqrt {f} x+2 f x^2\right )}{4 \sqrt {-d} \sqrt {f}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(191\) vs. \(2(81)=162\).
time = 0.08, size = 191, normalized size = 2.36 \begin {gather*} \frac {-\frac {\left (-d-2 e+\sqrt {d} \sqrt {d+2 e}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {f} x}{\sqrt {d+e-\sqrt {d} \sqrt {d+2 e}}}\right )}{\sqrt {d+e-\sqrt {d} \sqrt {d+2 e}}}-\frac {\left (d+2 e+\sqrt {d} \sqrt {d+2 e}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {f} x}{\sqrt {d+e+\sqrt {d} \sqrt {d+2 e}}}\right )}{\sqrt {d+e+\sqrt {d} \sqrt {d+2 e}}}}{2 \sqrt {2} \sqrt {d} \sqrt {d+2 e} \sqrt {f}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(e - 2*f*x^2)/(e^2 + 4*d*f*x^2 + 4*e*f*x^2 + 4*f^2*x^4),x]

[Out]

(-(((-d - 2*e + Sqrt[d]*Sqrt[d + 2*e])*ArcTan[(Sqrt[2]*Sqrt[f]*x)/Sqrt[d + e - Sqrt[d]*Sqrt[d + 2*e]]])/Sqrt[d
 + e - Sqrt[d]*Sqrt[d + 2*e]]) - ((d + 2*e + Sqrt[d]*Sqrt[d + 2*e])*ArcTan[(Sqrt[2]*Sqrt[f]*x)/Sqrt[d + e + Sq
rt[d]*Sqrt[d + 2*e]]])/Sqrt[d + e + Sqrt[d]*Sqrt[d + 2*e]])/(2*Sqrt[2]*Sqrt[d]*Sqrt[d + 2*e]*Sqrt[f])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(192\) vs. \(2(61)=122\).
time = 0.06, size = 193, normalized size = 2.38

method result size
risch \(-\frac {\ln \left (-2 \sqrt {-d f}\, f \,x^{2}-2 d f x -\sqrt {-d f}\, e \right )}{4 \sqrt {-d f}}+\frac {\ln \left (-2 \sqrt {-d f}\, f \,x^{2}+2 d f x -\sqrt {-d f}\, e \right )}{4 \sqrt {-d f}}\) \(74\)
default \(f^{2} \left (-\frac {\left (d f +2 e f -\sqrt {d \,f^{2} \left (d +2 e \right )}\right ) \sqrt {2}\, \arctanh \left (\frac {f x \sqrt {2}}{\sqrt {-d f -e f +\sqrt {d \,f^{2} \left (d +2 e \right )}}}\right )}{4 \sqrt {d \,f^{2} \left (d +2 e \right )}\, f^{2} \sqrt {-d f -e f +\sqrt {d \,f^{2} \left (d +2 e \right )}}}+\frac {\left (-d f -2 e f -\sqrt {d \,f^{2} \left (d +2 e \right )}\right ) \sqrt {2}\, \arctan \left (\frac {f x \sqrt {2}}{\sqrt {d f +e f +\sqrt {d \,f^{2} \left (d +2 e \right )}}}\right )}{4 \sqrt {d \,f^{2} \left (d +2 e \right )}\, f^{2} \sqrt {d f +e f +\sqrt {d \,f^{2} \left (d +2 e \right )}}}\right )\) \(193\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*f*x^2+e)/(4*f^2*x^4+4*d*f*x^2+4*e*f*x^2+e^2),x,method=_RETURNVERBOSE)

[Out]

f^2*(-1/4*(d*f+2*e*f-(d*f^2*(d+2*e))^(1/2))/(d*f^2*(d+2*e))^(1/2)/f^2*2^(1/2)/(-d*f-e*f+(d*f^2*(d+2*e))^(1/2))
^(1/2)*arctanh(f*x*2^(1/2)/(-d*f-e*f+(d*f^2*(d+2*e))^(1/2))^(1/2))+1/4*(-d*f-2*e*f-(d*f^2*(d+2*e))^(1/2))/(d*f
^2*(d+2*e))^(1/2)/f^2*2^(1/2)/(d*f+e*f+(d*f^2*(d+2*e))^(1/2))^(1/2)*arctan(f*x*2^(1/2)/(d*f+e*f+(d*f^2*(d+2*e)
)^(1/2))^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*f*x^2+e)/(4*f^2*x^4+4*d*f*x^2+4*e*f*x^2+e^2),x, algorithm="maxima")

[Out]

-integrate((2*f*x^2 - e)/(4*f^2*x^4 + 4*d*f*x^2 + 4*f*x^2*e + e^2), x)

________________________________________________________________________________________

Fricas [A]
time = 0.41, size = 150, normalized size = 1.85 \begin {gather*} \left [-\frac {\sqrt {-d f} \log \left (\frac {4 \, f^{2} x^{4} - 4 \, d f x^{2} + 4 \, f x^{2} e + 4 \, {\left (2 \, f x^{3} + x e\right )} \sqrt {-d f} + e^{2}}{4 \, f^{2} x^{4} + 4 \, d f x^{2} + 4 \, f x^{2} e + e^{2}}\right )}{4 \, d f}, \frac {\sqrt {d f} \arctan \left (\frac {{\left (2 \, f x^{3} + 2 \, d x + x e\right )} \sqrt {d f} e^{\left (-1\right )}}{d}\right ) - \sqrt {d f} \arctan \left (\frac {\sqrt {d f} x}{d}\right )}{2 \, d f}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*f*x^2+e)/(4*f^2*x^4+4*d*f*x^2+4*e*f*x^2+e^2),x, algorithm="fricas")

[Out]

[-1/4*sqrt(-d*f)*log((4*f^2*x^4 - 4*d*f*x^2 + 4*f*x^2*e + 4*(2*f*x^3 + x*e)*sqrt(-d*f) + e^2)/(4*f^2*x^4 + 4*d
*f*x^2 + 4*f*x^2*e + e^2))/(d*f), 1/2*(sqrt(d*f)*arctan((2*f*x^3 + 2*d*x + x*e)*sqrt(d*f)*e^(-1)/d) - sqrt(d*f
)*arctan(sqrt(d*f)*x/d))/(d*f)]

________________________________________________________________________________________

Sympy [A]
time = 0.33, size = 70, normalized size = 0.86 \begin {gather*} \frac {\sqrt {- \frac {1}{d f}} \log {\left (- d x \sqrt {- \frac {1}{d f}} + \frac {e}{2 f} + x^{2} \right )}}{4} - \frac {\sqrt {- \frac {1}{d f}} \log {\left (d x \sqrt {- \frac {1}{d f}} + \frac {e}{2 f} + x^{2} \right )}}{4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*f*x**2+e)/(4*f**2*x**4+4*d*f*x**2+4*e*f*x**2+e**2),x)

[Out]

sqrt(-1/(d*f))*log(-d*x*sqrt(-1/(d*f)) + e/(2*f) + x**2)/4 - sqrt(-1/(d*f))*log(d*x*sqrt(-1/(d*f)) + e/(2*f) +
 x**2)/4

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*f*x^2+e)/(4*f^2*x^4+4*d*f*x^2+4*e*f*x^2+e^2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m operator + Error: Bad Argument Valueindex.cc index_m operator + Error: Bad Argument Valuei
ndex.cc ind

________________________________________________________________________________________

Mupad [B]
time = 3.11, size = 50, normalized size = 0.62 \begin {gather*} \frac {\mathrm {atan}\left (\frac {2\,f^{3/2}\,x^3+2\,d\,\sqrt {f}\,x+e\,\sqrt {f}\,x}{\sqrt {d}\,e}\right )-\mathrm {atan}\left (\frac {\sqrt {f}\,x}{\sqrt {d}}\right )}{2\,\sqrt {d}\,\sqrt {f}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e - 2*f*x^2)/(e^2 + 4*f^2*x^4 + 4*d*f*x^2 + 4*e*f*x^2),x)

[Out]

(atan((2*f^(3/2)*x^3 + 2*d*f^(1/2)*x + e*f^(1/2)*x)/(d^(1/2)*e)) - atan((f^(1/2)*x)/d^(1/2)))/(2*d^(1/2)*f^(1/
2))

________________________________________________________________________________________