3.6.48 \(\int \frac {1}{x^3 (a c+b c x^2+d \sqrt {a+b x^2})} \, dx\) [548]

Optimal. Leaf size=151 \[ -\frac {a c-d \sqrt {a+b x^2}}{2 a \left (a c^2-d^2\right ) x^2}-\frac {b d \left (3 a c^2-d^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{2 a^{3/2} \left (a c^2-d^2\right )^2}-\frac {b c^3 \log (x)}{\left (a c^2-d^2\right )^2}+\frac {b c^3 \log \left (d+c \sqrt {a+b x^2}\right )}{\left (a c^2-d^2\right )^2} \]

[Out]

-1/2*b*d*(3*a*c^2-d^2)*arctanh((b*x^2+a)^(1/2)/a^(1/2))/a^(3/2)/(a*c^2-d^2)^2-b*c^3*ln(x)/(a*c^2-d^2)^2+b*c^3*
ln(d+c*(b*x^2+a)^(1/2))/(a*c^2-d^2)^2+1/2*(-a*c+d*(b*x^2+a)^(1/2))/a/(a*c^2-d^2)/x^2

________________________________________________________________________________________

Rubi [A]
time = 0.24, antiderivative size = 151, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {2186, 755, 815, 649, 212, 266} \begin {gather*} -\frac {b d \left (3 a c^2-d^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{2 a^{3/2} \left (a c^2-d^2\right )^2}-\frac {a c-d \sqrt {a+b x^2}}{2 a x^2 \left (a c^2-d^2\right )}+\frac {b c^3 \log \left (c \sqrt {a+b x^2}+d\right )}{\left (a c^2-d^2\right )^2}-\frac {b c^3 \log (x)}{\left (a c^2-d^2\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(a*c + b*c*x^2 + d*Sqrt[a + b*x^2])),x]

[Out]

-1/2*(a*c - d*Sqrt[a + b*x^2])/(a*(a*c^2 - d^2)*x^2) - (b*d*(3*a*c^2 - d^2)*ArcTanh[Sqrt[a + b*x^2]/Sqrt[a]])/
(2*a^(3/2)*(a*c^2 - d^2)^2) - (b*c^3*Log[x])/(a*c^2 - d^2)^2 + (b*c^3*Log[d + c*Sqrt[a + b*x^2]])/(a*c^2 - d^2
)^2

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 266

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 649

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[(-a)*c]

Rule 755

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(d + e*x)^(m + 1))*(a*e + c*d*x)*
((a + c*x^2)^(p + 1)/(2*a*(p + 1)*(c*d^2 + a*e^2))), x] + Dist[1/(2*a*(p + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^
m*Simp[c*d^2*(2*p + 3) + a*e^2*(m + 2*p + 3) + c*e*d*(m + 2*p + 4)*x, x]*(a + c*x^2)^(p + 1), x], x] /; FreeQ[
{a, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 815

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(
d + e*x)^m*((f + g*x)/(a + c*x^2)), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && Integer
Q[m]

Rule 2186

Int[(x_)^(m_.)/((c_) + (d_.)*(x_)^(n_) + (e_.)*Sqrt[(a_) + (b_.)*(x_)^(n_)]), x_Symbol] :> Dist[1/n, Subst[Int
[x^((m + 1)/n - 1)/(c + d*x + e*Sqrt[a + b*x]), x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[b*c
- a*d, 0] && IntegerQ[(m + 1)/n]

Rubi steps

\begin {align*} \int \frac {1}{x^3 \left (a c+b c x^2+d \sqrt {a+b x^2}\right )} \, dx &=\frac {1}{2} \text {Subst}\left (\int \frac {1}{x^2 \left (a c+b c x+d \sqrt {a+b x}\right )} \, dx,x,x^2\right )\\ &=b \text {Subst}\left (\int \frac {1}{(d+c x) \left (a-x^2\right )^2} \, dx,x,\sqrt {a+b x^2}\right )\\ &=-\frac {a c-d \sqrt {a+b x^2}}{2 a \left (a c^2-d^2\right ) x^2}-\frac {b \text {Subst}\left (\int \frac {-2 a c^2+d^2+c d x}{(d+c x) \left (a-x^2\right )} \, dx,x,\sqrt {a+b x^2}\right )}{2 a \left (a c^2-d^2\right )}\\ &=-\frac {a c-d \sqrt {a+b x^2}}{2 a \left (a c^2-d^2\right ) x^2}-\frac {b \text {Subst}\left (\int \left (-\frac {2 a c^4}{\left (a c^2-d^2\right ) (d+c x)}+\frac {3 a c^2 d-d^3-2 a c^3 x}{\left (a c^2-d^2\right ) \left (a-x^2\right )}\right ) \, dx,x,\sqrt {a+b x^2}\right )}{2 a \left (a c^2-d^2\right )}\\ &=-\frac {a c-d \sqrt {a+b x^2}}{2 a \left (a c^2-d^2\right ) x^2}+\frac {b c^3 \log \left (d+c \sqrt {a+b x^2}\right )}{\left (a c^2-d^2\right )^2}-\frac {b \text {Subst}\left (\int \frac {3 a c^2 d-d^3-2 a c^3 x}{a-x^2} \, dx,x,\sqrt {a+b x^2}\right )}{2 a \left (a c^2-d^2\right )^2}\\ &=-\frac {a c-d \sqrt {a+b x^2}}{2 a \left (a c^2-d^2\right ) x^2}+\frac {b c^3 \log \left (d+c \sqrt {a+b x^2}\right )}{\left (a c^2-d^2\right )^2}+\frac {\left (b c^3\right ) \text {Subst}\left (\int \frac {x}{a-x^2} \, dx,x,\sqrt {a+b x^2}\right )}{\left (a c^2-d^2\right )^2}-\frac {\left (b d \left (3 a c^2-d^2\right )\right ) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\sqrt {a+b x^2}\right )}{2 a \left (a c^2-d^2\right )^2}\\ &=-\frac {a c-d \sqrt {a+b x^2}}{2 a \left (a c^2-d^2\right ) x^2}-\frac {b d \left (3 a c^2-d^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{2 a^{3/2} \left (a c^2-d^2\right )^2}-\frac {b c^3 \log (x)}{\left (a c^2-d^2\right )^2}+\frac {b c^3 \log \left (d+c \sqrt {a+b x^2}\right )}{\left (a c^2-d^2\right )^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.21, size = 139, normalized size = 0.92 \begin {gather*} \frac {b d \left (-3 a c^2+d^2\right ) x^2 \tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )+\sqrt {a} \left (-\left (\left (a c^2-d^2\right ) \left (a c-d \sqrt {a+b x^2}\right )\right )-a b c^3 x^2 \log \left (b x^2\right )+2 a b c^3 x^2 \log \left (d+c \sqrt {a+b x^2}\right )\right )}{2 a^{3/2} \left (-a c^2+d^2\right )^2 x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(a*c + b*c*x^2 + d*Sqrt[a + b*x^2])),x]

[Out]

(b*d*(-3*a*c^2 + d^2)*x^2*ArcTanh[Sqrt[a + b*x^2]/Sqrt[a]] + Sqrt[a]*(-((a*c^2 - d^2)*(a*c - d*Sqrt[a + b*x^2]
)) - a*b*c^3*x^2*Log[b*x^2] + 2*a*b*c^3*x^2*Log[d + c*Sqrt[a + b*x^2]]))/(2*a^(3/2)*(-(a*c^2) + d^2)^2*x^2)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(2458\) vs. \(2(137)=274\).
time = 0.05, size = 2459, normalized size = 16.28

method result size
default \(\text {Expression too large to display}\) \(2459\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(a*c+b*c*x^2+d*(b*x^2+a)^(1/2)),x,method=_RETURNVERBOSE)

[Out]

-1/2*c/(a*c^2-d^2)/x^2-2*b*c^3*ln(x)/(a*c^2-d^2)^2+1/a*c*b/(a*c^2-d^2)^2*ln(x)*d^2+1/2*a*c^5*b/(a*c^2-d^2)^2/d
^2*ln(b*c^2*x^2+a*c^2-d^2)+b*c/a/(a*c^2-d^2)*ln(x)-1/2*b*c^3/(a*c^2-d^2)/d^2*ln(b*c^2*x^2+a*c^2-d^2)+1/2*d*b^2
*c^6/(a*c^2-d^2)^2/((-a*b)^(1/2)*c^2+(-(a*c^2-d^2)*b*c^2)^(1/2))/((-a*b)^(1/2)*c^2-(-(a*c^2-d^2)*b*c^2)^(1/2))
*(b*(x-(-(a*c^2-d^2)*b*c^2)^(1/2)/b/c^2)^2+2/c^2*(-(a*c^2-d^2)*b*c^2)^(1/2)*(x-(-(a*c^2-d^2)*b*c^2)^(1/2)/b/c^
2)+d^2/c^2)^(1/2)+1/2*d*b^(3/2)*c^4/(a*c^2-d^2)^2/((-a*b)^(1/2)*c^2+(-(a*c^2-d^2)*b*c^2)^(1/2))/((-a*b)^(1/2)*
c^2-(-(a*c^2-d^2)*b*c^2)^(1/2))*(-(a*c^2-d^2)*b*c^2)^(1/2)*ln((1/c^2*(-(a*c^2-d^2)*b*c^2)^(1/2)+(x-(-(a*c^2-d^
2)*b*c^2)^(1/2)/b/c^2)*b)/b^(1/2)+(b*(x-(-(a*c^2-d^2)*b*c^2)^(1/2)/b/c^2)^2+2/c^2*(-(a*c^2-d^2)*b*c^2)^(1/2)*(
x-(-(a*c^2-d^2)*b*c^2)^(1/2)/b/c^2)+d^2/c^2)^(1/2))-1/2*b^2*c^4/(a*c^2-d^2)^2/((-a*b)^(1/2)*c^2+(-(a*c^2-d^2)*
b*c^2)^(1/2))/((-a*b)^(1/2)*c^2-(-(a*c^2-d^2)*b*c^2)^(1/2))*d^3/(d^2/c^2)^(1/2)*ln((2*d^2/c^2+2/c^2*(-(a*c^2-d
^2)*b*c^2)^(1/2)*(x-(-(a*c^2-d^2)*b*c^2)^(1/2)/b/c^2)+2*(d^2/c^2)^(1/2)*(b*(x-(-(a*c^2-d^2)*b*c^2)^(1/2)/b/c^2
)^2+2/c^2*(-(a*c^2-d^2)*b*c^2)^(1/2)*(x-(-(a*c^2-d^2)*b*c^2)^(1/2)/b/c^2)+d^2/c^2)^(1/2))/(x-(-(a*c^2-d^2)*b*c
^2)^(1/2)/b/c^2))+1/2*d/a^2/(a*c^2-d^2)/x^2*(b*x^2+a)^(3/2)+1/2*d/a^(3/2)/(a*c^2-d^2)*b*ln((2*a+2*a^(1/2)*(b*x
^2+a)^(1/2))/x)-1/2*d/a^2/(a*c^2-d^2)*b*(b*x^2+a)^(1/2)-2*d*b/a^(1/2)/(a*c^2-d^2)^2*ln((2*a+2*a^(1/2)*(b*x^2+a
)^(1/2))/x)*c^2+b/a^(3/2)/(a*c^2-d^2)^2*ln((2*a+2*a^(1/2)*(b*x^2+a)^(1/2))/x)*d^3+2*d*b/a/(a*c^2-d^2)^2*(b*x^2
+a)^(1/2)*c^2-b/a^2/(a*c^2-d^2)^2*(b*x^2+a)^(1/2)*d^3-1/2*d*b^2*c^2/a^2/((-a*b)^(1/2)*c^2+(-(a*c^2-d^2)*b*c^2)
^(1/2))/((-a*b)^(1/2)*c^2-(-(a*c^2-d^2)*b*c^2)^(1/2))*(b*(x-1/b*(-a*b)^(1/2))^2+2*(-a*b)^(1/2)*(x-1/b*(-a*b)^(
1/2)))^(1/2)-1/2*d*b^(3/2)*c^2/a^2/((-a*b)^(1/2)*c^2+(-(a*c^2-d^2)*b*c^2)^(1/2))/((-a*b)^(1/2)*c^2-(-(a*c^2-d^
2)*b*c^2)^(1/2))*(-a*b)^(1/2)*ln(((x-1/b*(-a*b)^(1/2))*b+(-a*b)^(1/2))/b^(1/2)+(b*(x-1/b*(-a*b)^(1/2))^2+2*(-a
*b)^(1/2)*(x-1/b*(-a*b)^(1/2)))^(1/2))-1/2*d*b^2*c^2/a^2/((-a*b)^(1/2)*c^2+(-(a*c^2-d^2)*b*c^2)^(1/2))/((-a*b)
^(1/2)*c^2-(-(a*c^2-d^2)*b*c^2)^(1/2))*(b*(x+1/b*(-a*b)^(1/2))^2-2*(-a*b)^(1/2)*(x+1/b*(-a*b)^(1/2)))^(1/2)+1/
2*d*b^(3/2)*c^2/a^2/((-a*b)^(1/2)*c^2+(-(a*c^2-d^2)*b*c^2)^(1/2))/((-a*b)^(1/2)*c^2-(-(a*c^2-d^2)*b*c^2)^(1/2)
)*(-a*b)^(1/2)*ln(((x+1/b*(-a*b)^(1/2))*b-(-a*b)^(1/2))/b^(1/2)+(b*(x+1/b*(-a*b)^(1/2))^2-2*(-a*b)^(1/2)*(x+1/
b*(-a*b)^(1/2)))^(1/2))+1/2*d*b^2*c^6/(a*c^2-d^2)^2/((-a*b)^(1/2)*c^2+(-(a*c^2-d^2)*b*c^2)^(1/2))/((-a*b)^(1/2
)*c^2-(-(a*c^2-d^2)*b*c^2)^(1/2))*(b*(x+(-(a*c^2-d^2)*b*c^2)^(1/2)/b/c^2)^2-2/c^2*(-(a*c^2-d^2)*b*c^2)^(1/2)*(
x+(-(a*c^2-d^2)*b*c^2)^(1/2)/b/c^2)+d^2/c^2)^(1/2)-1/2*d*b^(3/2)*c^4/(a*c^2-d^2)^2/((-a*b)^(1/2)*c^2+(-(a*c^2-
d^2)*b*c^2)^(1/2))/((-a*b)^(1/2)*c^2-(-(a*c^2-d^2)*b*c^2)^(1/2))*(-(a*c^2-d^2)*b*c^2)^(1/2)*ln((-1/c^2*(-(a*c^
2-d^2)*b*c^2)^(1/2)+(x+(-(a*c^2-d^2)*b*c^2)^(1/2)/b/c^2)*b)/b^(1/2)+(b*(x+(-(a*c^2-d^2)*b*c^2)^(1/2)/b/c^2)^2-
2/c^2*(-(a*c^2-d^2)*b*c^2)^(1/2)*(x+(-(a*c^2-d^2)*b*c^2)^(1/2)/b/c^2)+d^2/c^2)^(1/2))-1/2*b^2*c^4/(a*c^2-d^2)^
2/((-a*b)^(1/2)*c^2+(-(a*c^2-d^2)*b*c^2)^(1/2))/((-a*b)^(1/2)*c^2-(-(a*c^2-d^2)*b*c^2)^(1/2))*d^3/(d^2/c^2)^(1
/2)*ln((2*d^2/c^2-2/c^2*(-(a*c^2-d^2)*b*c^2)^(1/2)*(x+(-(a*c^2-d^2)*b*c^2)^(1/2)/b/c^2)+2*(d^2/c^2)^(1/2)*(b*(
x+(-(a*c^2-d^2)*b*c^2)^(1/2)/b/c^2)^2-2/c^2*(-(a*c^2-d^2)*b*c^2)^(1/2)*(x+(-(a*c^2-d^2)*b*c^2)^(1/2)/b/c^2)+d^
2/c^2)^(1/2))/(x+(-(a*c^2-d^2)*b*c^2)^(1/2)/b/c^2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a*c+b*c*x^2+d*(b*x^2+a)^(1/2)),x, algorithm="maxima")

[Out]

integrate(1/((b*c*x^2 + a*c + sqrt(b*x^2 + a)*d)*x^3), x)

________________________________________________________________________________________

Fricas [A]
time = 0.77, size = 530, normalized size = 3.51 \begin {gather*} \left [\frac {2 \, a^{2} b c^{3} x^{2} \log \left (b c^{2} x^{2} + a c^{2} - d^{2}\right ) - 4 \, a^{2} b c^{3} x^{2} \log \left (x\right ) + a^{2} b c^{3} x^{2} \log \left (-\frac {b c^{2} x^{2} + a c^{2} + 2 \, \sqrt {b x^{2} + a} c d + d^{2}}{x^{2}}\right ) - a^{2} b c^{3} x^{2} \log \left (-\frac {b c^{2} x^{2} + a c^{2} - 2 \, \sqrt {b x^{2} + a} c d + d^{2}}{x^{2}}\right ) - 2 \, a^{3} c^{3} + 2 \, a^{2} c d^{2} - {\left (3 \, a b c^{2} d - b d^{3}\right )} \sqrt {a} x^{2} \log \left (-\frac {b x^{2} + 2 \, \sqrt {b x^{2} + a} \sqrt {a} + 2 \, a}{x^{2}}\right ) + 2 \, {\left (a^{2} c^{2} d - a d^{3}\right )} \sqrt {b x^{2} + a}}{4 \, {\left (a^{4} c^{4} - 2 \, a^{3} c^{2} d^{2} + a^{2} d^{4}\right )} x^{2}}, \frac {2 \, a^{2} b c^{3} x^{2} \log \left (b c^{2} x^{2} + a c^{2} - d^{2}\right ) - 4 \, a^{2} b c^{3} x^{2} \log \left (x\right ) + a^{2} b c^{3} x^{2} \log \left (-\frac {b c^{2} x^{2} + a c^{2} + 2 \, \sqrt {b x^{2} + a} c d + d^{2}}{x^{2}}\right ) - a^{2} b c^{3} x^{2} \log \left (-\frac {b c^{2} x^{2} + a c^{2} - 2 \, \sqrt {b x^{2} + a} c d + d^{2}}{x^{2}}\right ) - 2 \, a^{3} c^{3} + 2 \, a^{2} c d^{2} + 2 \, {\left (3 \, a b c^{2} d - b d^{3}\right )} \sqrt {-a} x^{2} \arctan \left (\frac {\sqrt {-a}}{\sqrt {b x^{2} + a}}\right ) + 2 \, {\left (a^{2} c^{2} d - a d^{3}\right )} \sqrt {b x^{2} + a}}{4 \, {\left (a^{4} c^{4} - 2 \, a^{3} c^{2} d^{2} + a^{2} d^{4}\right )} x^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a*c+b*c*x^2+d*(b*x^2+a)^(1/2)),x, algorithm="fricas")

[Out]

[1/4*(2*a^2*b*c^3*x^2*log(b*c^2*x^2 + a*c^2 - d^2) - 4*a^2*b*c^3*x^2*log(x) + a^2*b*c^3*x^2*log(-(b*c^2*x^2 +
a*c^2 + 2*sqrt(b*x^2 + a)*c*d + d^2)/x^2) - a^2*b*c^3*x^2*log(-(b*c^2*x^2 + a*c^2 - 2*sqrt(b*x^2 + a)*c*d + d^
2)/x^2) - 2*a^3*c^3 + 2*a^2*c*d^2 - (3*a*b*c^2*d - b*d^3)*sqrt(a)*x^2*log(-(b*x^2 + 2*sqrt(b*x^2 + a)*sqrt(a)
+ 2*a)/x^2) + 2*(a^2*c^2*d - a*d^3)*sqrt(b*x^2 + a))/((a^4*c^4 - 2*a^3*c^2*d^2 + a^2*d^4)*x^2), 1/4*(2*a^2*b*c
^3*x^2*log(b*c^2*x^2 + a*c^2 - d^2) - 4*a^2*b*c^3*x^2*log(x) + a^2*b*c^3*x^2*log(-(b*c^2*x^2 + a*c^2 + 2*sqrt(
b*x^2 + a)*c*d + d^2)/x^2) - a^2*b*c^3*x^2*log(-(b*c^2*x^2 + a*c^2 - 2*sqrt(b*x^2 + a)*c*d + d^2)/x^2) - 2*a^3
*c^3 + 2*a^2*c*d^2 + 2*(3*a*b*c^2*d - b*d^3)*sqrt(-a)*x^2*arctan(sqrt(-a)/sqrt(b*x^2 + a)) + 2*(a^2*c^2*d - a*
d^3)*sqrt(b*x^2 + a))/((a^4*c^4 - 2*a^3*c^2*d^2 + a^2*d^4)*x^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{3} \left (a c + b c x^{2} + d \sqrt {a + b x^{2}}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(a*c+b*c*x**2+d*(b*x**2+a)**(1/2)),x)

[Out]

Integral(1/(x**3*(a*c + b*c*x**2 + d*sqrt(a + b*x**2))), x)

________________________________________________________________________________________

Giac [A]
time = 2.89, size = 210, normalized size = 1.39 \begin {gather*} \frac {b c^{4} \log \left ({\left | \sqrt {b x^{2} + a} c + d \right |}\right )}{a^{2} c^{5} - 2 \, a c^{3} d^{2} + c d^{4}} - \frac {b c^{3} \log \left (-b x^{2}\right )}{2 \, {\left (a^{2} c^{4} - 2 \, a c^{2} d^{2} + d^{4}\right )}} + \frac {{\left (3 \, a b c^{2} d - b d^{3}\right )} \arctan \left (\frac {\sqrt {b x^{2} + a}}{\sqrt {-a}}\right )}{2 \, {\left (a^{3} c^{4} - 2 \, a^{2} c^{2} d^{2} + a d^{4}\right )} \sqrt {-a}} - \frac {a^{2} b c^{3} - a b c d^{2} - {\left (a b c^{2} d - b d^{3}\right )} \sqrt {b x^{2} + a}}{2 \, {\left (a c^{2} - d^{2}\right )}^{2} a b x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a*c+b*c*x^2+d*(b*x^2+a)^(1/2)),x, algorithm="giac")

[Out]

b*c^4*log(abs(sqrt(b*x^2 + a)*c + d))/(a^2*c^5 - 2*a*c^3*d^2 + c*d^4) - 1/2*b*c^3*log(-b*x^2)/(a^2*c^4 - 2*a*c
^2*d^2 + d^4) + 1/2*(3*a*b*c^2*d - b*d^3)*arctan(sqrt(b*x^2 + a)/sqrt(-a))/((a^3*c^4 - 2*a^2*c^2*d^2 + a*d^4)*
sqrt(-a)) - 1/2*(a^2*b*c^3 - a*b*c*d^2 - (a*b*c^2*d - b*d^3)*sqrt(b*x^2 + a))/((a*c^2 - d^2)^2*a*b*x^2)

________________________________________________________________________________________

Mupad [B]
time = 5.56, size = 2500, normalized size = 16.56 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3*(a*c + d*(a + b*x^2)^(1/2) + b*c*x^2)),x)

[Out]

(atan(((((((12*a^2*b*c^6*d^9 - 28*a^3*b*c^8*d^7 + 32*a^4*b*c^10*d^5 - 18*a^5*b*c^12*d^3 - 2*a*b*c^4*d^11 + 4*a
^6*b*c^14*d)/(16*(a^5*c^6 - a^2*d^6 + 3*a^3*c^2*d^4 - 3*a^4*c^4*d^2)) - ((a + b*x^2)^(1/2)*(16*(b^2*d^6 - 6*a*
b^2*c^2*d^4 + 9*a^2*b^2*c^4*d^2)*(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2))^(1/2)*(1
6*a^7*c^14 + 16*a^2*c^4*d^10 - 48*a^3*c^6*d^8 + 32*a^4*c^8*d^6 + 32*a^5*c^10*d^4 - 48*a^6*c^12*d^2))/(512*(a^4
*c^4 + a^2*d^4 - 2*a^3*c^2*d^2)*(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2)))*(16*(b^2
*d^6 - 6*a*b^2*c^2*d^4 + 9*a^2*b^2*c^4*d^2)*(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2
))^(1/2))/(16*(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2)) + ((a + b*x^2)^(1/2)*(b^2*c
^6*d^6 - 6*a*b^2*c^8*d^4 + 13*a^2*b^2*c^10*d^2))/(32*(a^4*c^4 + a^2*d^4 - 2*a^3*c^2*d^2)))*(16*(b^2*d^6 - 6*a*
b^2*c^2*d^4 + 9*a^2*b^2*c^4*d^2)*(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2))^(1/2)*1i
)/(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2) - (((((12*a^2*b*c^6*d^9 - 28*a^3*b*c^8*d
^7 + 32*a^4*b*c^10*d^5 - 18*a^5*b*c^12*d^3 - 2*a*b*c^4*d^11 + 4*a^6*b*c^14*d)/(16*(a^5*c^6 - a^2*d^6 + 3*a^3*c
^2*d^4 - 3*a^4*c^4*d^2)) + ((a + b*x^2)^(1/2)*(16*(b^2*d^6 - 6*a*b^2*c^2*d^4 + 9*a^2*b^2*c^4*d^2)*(a^7*c^8 + a
^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2))^(1/2)*(16*a^7*c^14 + 16*a^2*c^4*d^10 - 48*a^3*c^6*d^8
 + 32*a^4*c^8*d^6 + 32*a^5*c^10*d^4 - 48*a^6*c^12*d^2))/(512*(a^4*c^4 + a^2*d^4 - 2*a^3*c^2*d^2)*(a^7*c^8 + a^
3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2)))*(16*(b^2*d^6 - 6*a*b^2*c^2*d^4 + 9*a^2*b^2*c^4*d^2)*(
a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2))^(1/2))/(16*(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*
d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2)) - ((a + b*x^2)^(1/2)*(b^2*c^6*d^6 - 6*a*b^2*c^8*d^4 + 13*a^2*b^2*c^10*d^
2))/(32*(a^4*c^4 + a^2*d^4 - 2*a^3*c^2*d^2)))*(16*(b^2*d^6 - 6*a*b^2*c^2*d^4 + 9*a^2*b^2*c^4*d^2)*(a^7*c^8 + a
^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2))^(1/2)*1i)/(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*
c^4*d^4 - 4*a^6*c^6*d^2))/(((b^3*c^8*d^5)/2 - (3*a*b^3*c^10*d^3)/2)/(a^5*c^6 - a^2*d^6 + 3*a^3*c^2*d^4 - 3*a^4
*c^4*d^2) + (((((12*a^2*b*c^6*d^9 - 28*a^3*b*c^8*d^7 + 32*a^4*b*c^10*d^5 - 18*a^5*b*c^12*d^3 - 2*a*b*c^4*d^11
+ 4*a^6*b*c^14*d)/(16*(a^5*c^6 - a^2*d^6 + 3*a^3*c^2*d^4 - 3*a^4*c^4*d^2)) - ((a + b*x^2)^(1/2)*(16*(b^2*d^6 -
 6*a*b^2*c^2*d^4 + 9*a^2*b^2*c^4*d^2)*(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2))^(1/
2)*(16*a^7*c^14 + 16*a^2*c^4*d^10 - 48*a^3*c^6*d^8 + 32*a^4*c^8*d^6 + 32*a^5*c^10*d^4 - 48*a^6*c^12*d^2))/(512
*(a^4*c^4 + a^2*d^4 - 2*a^3*c^2*d^2)*(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2)))*(16
*(b^2*d^6 - 6*a*b^2*c^2*d^4 + 9*a^2*b^2*c^4*d^2)*(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^
6*d^2))^(1/2))/(16*(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2)) + ((a + b*x^2)^(1/2)*(
b^2*c^6*d^6 - 6*a*b^2*c^8*d^4 + 13*a^2*b^2*c^10*d^2))/(32*(a^4*c^4 + a^2*d^4 - 2*a^3*c^2*d^2)))*(16*(b^2*d^6 -
 6*a*b^2*c^2*d^4 + 9*a^2*b^2*c^4*d^2)*(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2))^(1/
2))/(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2) + (((((12*a^2*b*c^6*d^9 - 28*a^3*b*c^8
*d^7 + 32*a^4*b*c^10*d^5 - 18*a^5*b*c^12*d^3 - 2*a*b*c^4*d^11 + 4*a^6*b*c^14*d)/(16*(a^5*c^6 - a^2*d^6 + 3*a^3
*c^2*d^4 - 3*a^4*c^4*d^2)) + ((a + b*x^2)^(1/2)*(16*(b^2*d^6 - 6*a*b^2*c^2*d^4 + 9*a^2*b^2*c^4*d^2)*(a^7*c^8 +
 a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2))^(1/2)*(16*a^7*c^14 + 16*a^2*c^4*d^10 - 48*a^3*c^6*d
^8 + 32*a^4*c^8*d^6 + 32*a^5*c^10*d^4 - 48*a^6*c^12*d^2))/(512*(a^4*c^4 + a^2*d^4 - 2*a^3*c^2*d^2)*(a^7*c^8 +
a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2)))*(16*(b^2*d^6 - 6*a*b^2*c^2*d^4 + 9*a^2*b^2*c^4*d^2)
*(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2))^(1/2))/(16*(a^7*c^8 + a^3*d^8 - 4*a^4*c^
2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2)) - ((a + b*x^2)^(1/2)*(b^2*c^6*d^6 - 6*a*b^2*c^8*d^4 + 13*a^2*b^2*c^10*
d^2))/(32*(a^4*c^4 + a^2*d^4 - 2*a^3*c^2*d^2)))*(16*(b^2*d^6 - 6*a*b^2*c^2*d^4 + 9*a^2*b^2*c^4*d^2)*(a^7*c^8 +
 a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2))^(1/2))/(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c
^4*d^4 - 4*a^6*c^6*d^2)))*(16*(b^2*d^6 - 6*a*b^2*c^2*d^4 + 9*a^2*b^2*c^4*d^2)*(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d
^6 + 6*a^5*c^4*d^4 - 4*a^6*c^6*d^2))^(1/2)*1i)/(8*(a^7*c^8 + a^3*d^8 - 4*a^4*c^2*d^6 + 6*a^5*c^4*d^4 - 4*a^6*c
^6*d^2)) - c/(2*x^2*(a*c^2 - d^2)) - (b*c^3*log(x))/(d^4 + a^2*c^4 - 2*a*c^2*d^2) + (b*c^3*log(a*c^2 - d^2 + b
*c^2*x^2))/(2*d^4 + 2*a^2*c^4 - 4*a*c^2*d^2) - (d*(a + b*x^2)^(1/2))/(2*x^2*(a*d^2 - a^2*c^2)) + (b*c^3*atan((
(c^3*(((a + b*x^2)^(1/2)*(c^6*d^6 - 6*a*c^8*d^4 + 13*a^2*c^10*d^2))/(2*(a^4*c^4 + a^2*d^4 - 2*a^3*c^2*d^2)) +
(c^3*((8*a*c^4*d^11 - 16*a^6*c^14*d - 48*a^2*c^6*d^9 + 112*a^3*c^8*d^7 - 128*a^4*c^10*d^5 + 72*a^5*c^12*d^3)/(
4*(a^5*c^6 - a^2*d^6 + 3*a^3*c^2*d^4 - 3*a^4*c^...

________________________________________________________________________________________