3.6.54 \(\int \frac {x^2}{a c+b c x^3+d \sqrt {a+b x^3}} \, dx\) [554]

Optimal. Leaf size=26 \[ \frac {2 \log \left (d+c \sqrt {a+b x^3}\right )}{3 b c} \]

[Out]

2/3*ln(d+c*(b*x^3+a)^(1/2))/b/c

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {2186, 31} \begin {gather*} \frac {2 \log \left (c \sqrt {a+b x^3}+d\right )}{3 b c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/(a*c + b*c*x^3 + d*Sqrt[a + b*x^3]),x]

[Out]

(2*Log[d + c*Sqrt[a + b*x^3]])/(3*b*c)

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 2186

Int[(x_)^(m_.)/((c_) + (d_.)*(x_)^(n_) + (e_.)*Sqrt[(a_) + (b_.)*(x_)^(n_)]), x_Symbol] :> Dist[1/n, Subst[Int
[x^((m + 1)/n - 1)/(c + d*x + e*Sqrt[a + b*x]), x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[b*c
- a*d, 0] && IntegerQ[(m + 1)/n]

Rubi steps

\begin {align*} \int \frac {x^2}{a c+b c x^3+d \sqrt {a+b x^3}} \, dx &=\frac {1}{3} \text {Subst}\left (\int \frac {1}{a c+b c x+d \sqrt {a+b x}} \, dx,x,x^3\right )\\ &=\frac {2 \text {Subst}\left (\int \frac {1}{d+c x} \, dx,x,\sqrt {a+b x^3}\right )}{3 b}\\ &=\frac {2 \log \left (d+c \sqrt {a+b x^3}\right )}{3 b c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 29, normalized size = 1.12 \begin {gather*} \frac {2 \log \left (b d+b c \sqrt {a+b x^3}\right )}{3 b c} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/(a*c + b*c*x^3 + d*Sqrt[a + b*x^3]),x]

[Out]

(2*Log[b*d + b*c*Sqrt[a + b*x^3]])/(3*b*c)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.07, size = 501, normalized size = 19.27

method result size
default \(d \left (\frac {2 \sqrt {b \,x^{3}+a}}{3 d^{2} b}-\frac {c^{2} \left (\frac {2 \sqrt {b \,x^{3}+a}}{3 c^{2} b}+\frac {i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (b \,c^{2} \textit {\_Z}^{3}+c^{2} a -d^{2}\right )}{\sum }\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i b \left (2 x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}-i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {b \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{-3 \left (-a \,b^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i b \left (2 x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{2 \left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha b -i \left (-a \,b^{2}\right )^{\frac {2}{3}} \sqrt {3}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} b^{2}-\left (-a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha b -\left (-a \,b^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, -\frac {c^{2} \left (2 i \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha ^{2} b -i \left (-a \,b^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, a b -3 \left (-a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 a b \right )}{2 b \,d^{2}}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{2 \sqrt {b \,x^{3}+a}}\right )}{3 b^{3} c^{2}}\right )}{d^{2}}\right )+\frac {\ln \left (b \,c^{2} x^{3}+c^{2} a -d^{2}\right )}{3 b c}\) \(501\)
elliptic \(\frac {\sqrt {b \,x^{3}+a}\, \left (d +c \sqrt {b \,x^{3}+a}\right ) \left (\frac {\ln \left (b \,c^{2} x^{3}+c^{2} a -d^{2}\right )}{3 b c}-\frac {i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (b \,c^{2} \textit {\_Z}^{3}+c^{2} a -d^{2}\right )}{\sum }\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i b \left (2 x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}-i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {b \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{-3 \left (-a \,b^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i b \left (2 x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{2 \left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha b -i \left (-a \,b^{2}\right )^{\frac {2}{3}} \sqrt {3}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} b^{2}-\left (-a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha b -\left (-a \,b^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, -\frac {c^{2} \left (2 i \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha ^{2} b -i \left (-a \,b^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, a b -3 \left (-a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 a b \right )}{2 b \,d^{2}}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{2 \sqrt {b \,x^{3}+a}}\right )}{3 d \,b^{3}}\right )}{a c +b c \,x^{3}+d \sqrt {b \,x^{3}+a}}\) \(501\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a*c+b*c*x^3+d*(b*x^3+a)^(1/2)),x,method=_RETURNVERBOSE)

[Out]

d*(2/3/d^2/b*(b*x^3+a)^(1/2)-c^2/d^2*(2/3/c^2/b*(b*x^3+a)^(1/2)+1/3*I/b^3/c^2*2^(1/2)*sum((-a*b^2)^(1/3)*(1/2*
I*b*(2*x+1/b*((-a*b^2)^(1/3)-I*3^(1/2)*(-a*b^2)^(1/3)))/(-a*b^2)^(1/3))^(1/2)*(b*(x-1/b*(-a*b^2)^(1/3))/(-3*(-
a*b^2)^(1/3)+I*3^(1/2)*(-a*b^2)^(1/3)))^(1/2)*(-1/2*I*b*(2*x+1/b*((-a*b^2)^(1/3)+I*3^(1/2)*(-a*b^2)^(1/3)))/(-
a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*(I*(-a*b^2)^(1/3)*3^(1/2)*_alpha*b-I*(-a*b^2)^(2/3)*3^(1/2)+2*_alpha^2*b^2
-(-a*b^2)^(1/3)*_alpha*b-(-a*b^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a
*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),-1/2/b*c^2*(2*I*(-a*b^2)^(1/3)*3^(1/2)*_alpha^2*b-I*(-a*b^2)^(2/3
)*3^(1/2)*_alpha+I*3^(1/2)*a*b-3*(-a*b^2)^(2/3)*_alpha-3*a*b)/d^2,(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)
^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*b*c^2+a*c^2-d^2))))+1/3/b/c*ln(b*c^2*x^3+a*c
^2-d^2)

________________________________________________________________________________________

Maxima [A]
time = 0.28, size = 22, normalized size = 0.85 \begin {gather*} \frac {2 \, \log \left (\sqrt {b x^{3} + a} c + d\right )}{3 \, b c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a*c+b*c*x^3+d*(b*x^3+a)^(1/2)),x, algorithm="maxima")

[Out]

2/3*log(sqrt(b*x^3 + a)*c + d)/(b*c)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 61 vs. \(2 (22) = 44\).
time = 0.38, size = 61, normalized size = 2.35 \begin {gather*} \frac {\log \left (b c^{2} x^{3} + a c^{2} - d^{2}\right ) + \log \left (\sqrt {b x^{3} + a} c + d\right ) - \log \left (\sqrt {b x^{3} + a} c - d\right )}{3 \, b c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a*c+b*c*x^3+d*(b*x^3+a)^(1/2)),x, algorithm="fricas")

[Out]

1/3*(log(b*c^2*x^3 + a*c^2 - d^2) + log(sqrt(b*x^3 + a)*c + d) - log(sqrt(b*x^3 + a)*c - d))/(b*c)

________________________________________________________________________________________

Sympy [A]
time = 2.00, size = 32, normalized size = 1.23 \begin {gather*} \frac {2 \left (\begin {cases} \frac {\sqrt {a + b x^{3}}}{d} & \text {for}\: c = 0 \\\frac {\log {\left (c \sqrt {a + b x^{3}} + d \right )}}{c} & \text {otherwise} \end {cases}\right )}{3 b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(a*c+b*c*x**3+d*(b*x**3+a)**(1/2)),x)

[Out]

2*Piecewise((sqrt(a + b*x**3)/d, Eq(c, 0)), (log(c*sqrt(a + b*x**3) + d)/c, True))/(3*b)

________________________________________________________________________________________

Giac [A]
time = 3.24, size = 23, normalized size = 0.88 \begin {gather*} \frac {2 \, \log \left ({\left | \sqrt {b x^{3} + a} c + d \right |}\right )}{3 \, b c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a*c+b*c*x^3+d*(b*x^3+a)^(1/2)),x, algorithm="giac")

[Out]

2/3*log(abs(sqrt(b*x^3 + a)*c + d))/(b*c)

________________________________________________________________________________________

Mupad [B]
time = 3.51, size = 60, normalized size = 2.31 \begin {gather*} \frac {\ln \left (\frac {d+c\,\sqrt {b\,x^3+a}}{d-c\,\sqrt {b\,x^3+a}}\right )+\ln \left (b\,c^2\,x^3+a\,c^2-d^2\right )}{3\,b\,c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a*c + d*(a + b*x^3)^(1/2) + b*c*x^3),x)

[Out]

(log((d + c*(a + b*x^3)^(1/2))/(d - c*(a + b*x^3)^(1/2))) + log(a*c^2 - d^2 + b*c^2*x^3))/(3*b*c)

________________________________________________________________________________________