3.6.59 \(\int \frac {1}{a c+b c x^3+d \sqrt {a+b x^3}} \, dx\) [559]

Optimal. Leaf size=300 \[ -\frac {d x \sqrt {1+\frac {b x^3}{a}} F_1\left (\frac {1}{3};\frac {1}{2},1;\frac {4}{3};-\frac {b x^3}{a},-\frac {b c^2 x^3}{a c^2-d^2}\right )}{\left (a c^2-d^2\right ) \sqrt {a+b x^3}}-\frac {\sqrt [3]{c} \tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{b} c^{2/3} x}{\sqrt [3]{a c^2-d^2}}}{\sqrt {3}}\right )}{\sqrt {3} \sqrt [3]{b} \left (a c^2-d^2\right )^{2/3}}+\frac {\sqrt [3]{c} \log \left (\sqrt [3]{a c^2-d^2}+\sqrt [3]{b} c^{2/3} x\right )}{3 \sqrt [3]{b} \left (a c^2-d^2\right )^{2/3}}-\frac {\sqrt [3]{c} \log \left (\left (a c^2-d^2\right )^{2/3}-\sqrt [3]{b} c^{2/3} \sqrt [3]{a c^2-d^2} x+b^{2/3} c^{4/3} x^2\right )}{6 \sqrt [3]{b} \left (a c^2-d^2\right )^{2/3}} \]

[Out]

1/3*c^(1/3)*ln((a*c^2-d^2)^(1/3)+b^(1/3)*c^(2/3)*x)/b^(1/3)/(a*c^2-d^2)^(2/3)-1/6*c^(1/3)*ln((a*c^2-d^2)^(2/3)
-b^(1/3)*c^(2/3)*(a*c^2-d^2)^(1/3)*x+b^(2/3)*c^(4/3)*x^2)/b^(1/3)/(a*c^2-d^2)^(2/3)-1/3*c^(1/3)*arctan(1/3*(1-
2*b^(1/3)*c^(2/3)*x/(a*c^2-d^2)^(1/3))*3^(1/2))/b^(1/3)/(a*c^2-d^2)^(2/3)*3^(1/2)-d*x*AppellF1(1/3,1/2,1,4/3,-
b*x^3/a,-b*c^2*x^3/(a*c^2-d^2))*(1+b*x^3/a)^(1/2)/(a*c^2-d^2)/(b*x^3+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 300, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {2187, 206, 31, 648, 631, 210, 642, 441, 440} \begin {gather*} -\frac {d x \sqrt {\frac {b x^3}{a}+1} F_1\left (\frac {1}{3};\frac {1}{2},1;\frac {4}{3};-\frac {b x^3}{a},-\frac {b c^2 x^3}{a c^2-d^2}\right )}{\sqrt {a+b x^3} \left (a c^2-d^2\right )}-\frac {\sqrt [3]{c} \text {ArcTan}\left (\frac {1-\frac {2 \sqrt [3]{b} c^{2/3} x}{\sqrt [3]{a c^2-d^2}}}{\sqrt {3}}\right )}{\sqrt {3} \sqrt [3]{b} \left (a c^2-d^2\right )^{2/3}}-\frac {\sqrt [3]{c} \log \left (-\sqrt [3]{b} c^{2/3} x \sqrt [3]{a c^2-d^2}+\left (a c^2-d^2\right )^{2/3}+b^{2/3} c^{4/3} x^2\right )}{6 \sqrt [3]{b} \left (a c^2-d^2\right )^{2/3}}+\frac {\sqrt [3]{c} \log \left (\sqrt [3]{a c^2-d^2}+\sqrt [3]{b} c^{2/3} x\right )}{3 \sqrt [3]{b} \left (a c^2-d^2\right )^{2/3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*c + b*c*x^3 + d*Sqrt[a + b*x^3])^(-1),x]

[Out]

-((d*x*Sqrt[1 + (b*x^3)/a]*AppellF1[1/3, 1/2, 1, 4/3, -((b*x^3)/a), -((b*c^2*x^3)/(a*c^2 - d^2))])/((a*c^2 - d
^2)*Sqrt[a + b*x^3])) - (c^(1/3)*ArcTan[(1 - (2*b^(1/3)*c^(2/3)*x)/(a*c^2 - d^2)^(1/3))/Sqrt[3]])/(Sqrt[3]*b^(
1/3)*(a*c^2 - d^2)^(2/3)) + (c^(1/3)*Log[(a*c^2 - d^2)^(1/3) + b^(1/3)*c^(2/3)*x])/(3*b^(1/3)*(a*c^2 - d^2)^(2
/3)) - (c^(1/3)*Log[(a*c^2 - d^2)^(2/3) - b^(1/3)*c^(2/3)*(a*c^2 - d^2)^(1/3)*x + b^(2/3)*c^(4/3)*x^2])/(6*b^(
1/3)*(a*c^2 - d^2)^(2/3))

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Dist[1/(3*Rt[a, 3]^2), Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Di
st[1/(3*Rt[a, 3]^2), Int[(2*Rt[a, 3] - Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x]
 /; FreeQ[{a, b}, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 440

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 441

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n)^F
racPart[p]/(1 + b*(x^n/a))^FracPart[p]), Int[(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n,
p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 2187

Int[(u_.)/((c_) + (d_.)*(x_)^(n_) + (e_.)*Sqrt[(a_) + (b_.)*(x_)^(n_)]), x_Symbol] :> Dist[c, Int[u/(c^2 - a*e
^2 + c*d*x^n), x], x] - Dist[a*e, Int[u/((c^2 - a*e^2 + c*d*x^n)*Sqrt[a + b*x^n]), x], x] /; FreeQ[{a, b, c, d
, e, n}, x] && EqQ[b*c - a*d, 0]

Rubi steps

\begin {align*} \int \frac {1}{a c+b c x^3+d \sqrt {a+b x^3}} \, dx &=(a c) \int \frac {1}{a^2 c^2-a d^2+a b c^2 x^3} \, dx-(a d) \int \frac {1}{\sqrt {a+b x^3} \left (a^2 c^2-a d^2+a b c^2 x^3\right )} \, dx\\ &=\frac {\left (\sqrt [3]{a} c\right ) \int \frac {1}{\sqrt [3]{a} \sqrt [3]{a c^2-d^2}+\sqrt [3]{a} \sqrt [3]{b} c^{2/3} x} \, dx}{3 \left (a c^2-d^2\right )^{2/3}}+\frac {\left (\sqrt [3]{a} c\right ) \int \frac {2 \sqrt [3]{a} \sqrt [3]{a c^2-d^2}-\sqrt [3]{a} \sqrt [3]{b} c^{2/3} x}{a^{2/3} \left (a c^2-d^2\right )^{2/3}-a^{2/3} \sqrt [3]{b} c^{2/3} \sqrt [3]{a c^2-d^2} x+a^{2/3} b^{2/3} c^{4/3} x^2} \, dx}{3 \left (a c^2-d^2\right )^{2/3}}-\frac {\left (a d \sqrt {1+\frac {b x^3}{a}}\right ) \int \frac {1}{\sqrt {1+\frac {b x^3}{a}} \left (a^2 c^2-a d^2+a b c^2 x^3\right )} \, dx}{\sqrt {a+b x^3}}\\ &=-\frac {d x \sqrt {1+\frac {b x^3}{a}} F_1\left (\frac {1}{3};\frac {1}{2},1;\frac {4}{3};-\frac {b x^3}{a},-\frac {b c^2 x^3}{a c^2-d^2}\right )}{\left (a c^2-d^2\right ) \sqrt {a+b x^3}}+\frac {\sqrt [3]{c} \log \left (\sqrt [3]{a c^2-d^2}+\sqrt [3]{b} c^{2/3} x\right )}{3 \sqrt [3]{b} \left (a c^2-d^2\right )^{2/3}}-\frac {\sqrt [3]{c} \int \frac {-a^{2/3} \sqrt [3]{b} c^{2/3} \sqrt [3]{a c^2-d^2}+2 a^{2/3} b^{2/3} c^{4/3} x}{a^{2/3} \left (a c^2-d^2\right )^{2/3}-a^{2/3} \sqrt [3]{b} c^{2/3} \sqrt [3]{a c^2-d^2} x+a^{2/3} b^{2/3} c^{4/3} x^2} \, dx}{6 \sqrt [3]{b} \left (a c^2-d^2\right )^{2/3}}+\frac {\left (a^{2/3} c\right ) \int \frac {1}{a^{2/3} \left (a c^2-d^2\right )^{2/3}-a^{2/3} \sqrt [3]{b} c^{2/3} \sqrt [3]{a c^2-d^2} x+a^{2/3} b^{2/3} c^{4/3} x^2} \, dx}{2 \sqrt [3]{a c^2-d^2}}\\ &=-\frac {d x \sqrt {1+\frac {b x^3}{a}} F_1\left (\frac {1}{3};\frac {1}{2},1;\frac {4}{3};-\frac {b x^3}{a},-\frac {b c^2 x^3}{a c^2-d^2}\right )}{\left (a c^2-d^2\right ) \sqrt {a+b x^3}}+\frac {\sqrt [3]{c} \log \left (\sqrt [3]{a c^2-d^2}+\sqrt [3]{b} c^{2/3} x\right )}{3 \sqrt [3]{b} \left (a c^2-d^2\right )^{2/3}}-\frac {\sqrt [3]{c} \log \left (\left (a c^2-d^2\right )^{2/3}-\sqrt [3]{b} c^{2/3} \sqrt [3]{a c^2-d^2} x+b^{2/3} c^{4/3} x^2\right )}{6 \sqrt [3]{b} \left (a c^2-d^2\right )^{2/3}}+\frac {\sqrt [3]{c} \text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1-\frac {2 \sqrt [3]{b} c^{2/3} x}{\sqrt [3]{a c^2-d^2}}\right )}{\sqrt [3]{b} \left (a c^2-d^2\right )^{2/3}}\\ &=-\frac {d x \sqrt {1+\frac {b x^3}{a}} F_1\left (\frac {1}{3};\frac {1}{2},1;\frac {4}{3};-\frac {b x^3}{a},-\frac {b c^2 x^3}{a c^2-d^2}\right )}{\left (a c^2-d^2\right ) \sqrt {a+b x^3}}-\frac {\sqrt [3]{c} \tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{b} c^{2/3} x}{\sqrt [3]{a c^2-d^2}}}{\sqrt {3}}\right )}{\sqrt {3} \sqrt [3]{b} \left (a c^2-d^2\right )^{2/3}}+\frac {\sqrt [3]{c} \log \left (\sqrt [3]{a c^2-d^2}+\sqrt [3]{b} c^{2/3} x\right )}{3 \sqrt [3]{b} \left (a c^2-d^2\right )^{2/3}}-\frac {\sqrt [3]{c} \log \left (\left (a c^2-d^2\right )^{2/3}-\sqrt [3]{b} c^{2/3} \sqrt [3]{a c^2-d^2} x+b^{2/3} c^{4/3} x^2\right )}{6 \sqrt [3]{b} \left (a c^2-d^2\right )^{2/3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]
time = 10.05, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{a c+b c x^3+d \sqrt {a+b x^3}} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[(a*c + b*c*x^3 + d*Sqrt[a + b*x^3])^(-1),x]

[Out]

Integrate[(a*c + b*c*x^3 + d*Sqrt[a + b*x^3])^(-1), x]

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 6.
time = 0.07, size = 1201, normalized size = 4.00

method result size
elliptic \(\frac {\sqrt {b \,x^{3}+a}\, \left (d +c \sqrt {b \,x^{3}+a}\right ) \left (\frac {\ln \left (x +\left (\frac {c^{2} a -d^{2}}{b \,c^{2}}\right )^{\frac {1}{3}}\right )}{3 b c \left (\frac {c^{2} a -d^{2}}{b \,c^{2}}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{2}-\left (\frac {c^{2} a -d^{2}}{b \,c^{2}}\right )^{\frac {1}{3}} x +\left (\frac {c^{2} a -d^{2}}{b \,c^{2}}\right )^{\frac {2}{3}}\right )}{6 b c \left (\frac {c^{2} a -d^{2}}{b \,c^{2}}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {c^{2} a -d^{2}}{b \,c^{2}}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b c \left (\frac {c^{2} a -d^{2}}{b \,c^{2}}\right )^{\frac {2}{3}}}-\frac {i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (b \,c^{2} \textit {\_Z}^{3}+c^{2} a -d^{2}\right )}{\sum }\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i b \left (2 x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}-i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {b \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{-3 \left (-a \,b^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i b \left (2 x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{2 \left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha b -i \left (-a \,b^{2}\right )^{\frac {2}{3}} \sqrt {3}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} b^{2}-\left (-a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha b -\left (-a \,b^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, -\frac {c^{2} \left (2 i \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha ^{2} b -i \left (-a \,b^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, a b -3 \left (-a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 a b \right )}{2 b \,d^{2}}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{2 \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {b \,x^{3}+a}}\right )}{3 d \,b^{3}}\right )}{a c +b c \,x^{3}+d \sqrt {b \,x^{3}+a}}\) \(665\)
default \(\text {Expression too large to display}\) \(1201\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*c+b*c*x^3+d*(b*x^3+a)^(1/2)),x,method=_RETURNVERBOSE)

[Out]

d*(-2/3*I/d^2*3^(1/2)/b*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-
a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*
(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*Ellipt
icF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*
3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))-c^2/d^2*(-2/3*I/c^2*3^
(1/2)/b*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1
/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2
)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*
(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^
2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))+1/3*I/c^2/b^3*2^(1/2)*sum(1/_alpha^2*(
-a*b^2)^(1/3)*(1/2*I*b*(2*x+1/b*((-a*b^2)^(1/3)-I*3^(1/2)*(-a*b^2)^(1/3)))/(-a*b^2)^(1/3))^(1/2)*(b*(x-1/b*(-a
*b^2)^(1/3))/(-3*(-a*b^2)^(1/3)+I*3^(1/2)*(-a*b^2)^(1/3)))^(1/2)*(-1/2*I*b*(2*x+1/b*((-a*b^2)^(1/3)+I*3^(1/2)*
(-a*b^2)^(1/3)))/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*(I*(-a*b^2)^(1/3)*3^(1/2)*_alpha*b-I*(-a*b^2)^(2/3)*3^(
1/2)+2*_alpha^2*b^2-(-a*b^2)^(1/3)*_alpha*b-(-a*b^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-
1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),-1/2/b*c^2*(2*I*(-a*b^2)^(1/3)*3^(1/2)*_alpha^
2*b-I*(-a*b^2)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*a*b-3*(-a*b^2)^(2/3)*_alpha-3*a*b)/d^2,(I*3^(1/2)/b*(-a*b^2)^(1/
3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*b*c^2+a*c^2-d^2))))+1/3/b
/c/((a*c^2-d^2)/b/c^2)^(2/3)*ln(x+((a*c^2-d^2)/b/c^2)^(1/3))-1/6/b/c/((a*c^2-d^2)/b/c^2)^(2/3)*ln(x^2-((a*c^2-
d^2)/b/c^2)^(1/3)*x+((a*c^2-d^2)/b/c^2)^(2/3))+1/3/b/c/((a*c^2-d^2)/b/c^2)^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2
/((a*c^2-d^2)/b/c^2)^(1/3)*x-1))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*c+b*c*x^3+d*(b*x^3+a)^(1/2)),x, algorithm="maxima")

[Out]

integrate(1/(b*c*x^3 + a*c + sqrt(b*x^3 + a)*d), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*c+b*c*x^3+d*(b*x^3+a)^(1/2)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{a c + b c x^{3} + d \sqrt {a + b x^{3}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*c+b*c*x**3+d*(b*x**3+a)**(1/2)),x)

[Out]

Integral(1/(a*c + b*c*x**3 + d*sqrt(a + b*x**3)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*c+b*c*x^3+d*(b*x^3+a)^(1/2)),x, algorithm="giac")

[Out]

integrate(1/(b*c*x^3 + a*c + sqrt(b*x^3 + a)*d), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{a\,c+d\,\sqrt {b\,x^3+a}+b\,c\,x^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*c + d*(a + b*x^3)^(1/2) + b*c*x^3),x)

[Out]

int(1/(a*c + d*(a + b*x^3)^(1/2) + b*c*x^3), x)

________________________________________________________________________________________