3.1.44 \(\int \frac {2^{2/3}+2 x}{(2^{2/3}-x) \sqrt {1-x^3}} \, dx\) [44]

Optimal. Leaf size=40 \[ -\frac {2\ 2^{2/3} \tan ^{-1}\left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} x\right )}{\sqrt {1-x^3}}\right )}{\sqrt {3}} \]

[Out]

-2/3*2^(2/3)*arctan((1-2^(1/3)*x)*3^(1/2)/(-x^3+1)^(1/2))*3^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 40, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {2162, 209} \begin {gather*} -\frac {2\ 2^{2/3} \text {ArcTan}\left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} x\right )}{\sqrt {1-x^3}}\right )}{\sqrt {3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(2^(2/3) + 2*x)/((2^(2/3) - x)*Sqrt[1 - x^3]),x]

[Out]

(-2*2^(2/3)*ArcTan[(Sqrt[3]*(1 - 2^(1/3)*x))/Sqrt[1 - x^3]])/Sqrt[3]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 2162

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[2*(e/d), Subst[Int[
1/(1 + 3*a*x^2), x], x, (1 + 2*d*(x/c))/Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f,
 0] && EqQ[b*c^3 - 4*a*d^3, 0] && EqQ[2*d*e + c*f, 0]

Rubi steps

\begin {align*} \int \frac {2^{2/3}+2 x}{\left (2^{2/3}-x\right ) \sqrt {1-x^3}} \, dx &=-\left (\left (2\ 2^{2/3}\right ) \text {Subst}\left (\int \frac {1}{1+3 x^2} \, dx,x,\frac {1-\sqrt [3]{2} x}{\sqrt {1-x^3}}\right )\right )\\ &=-\frac {2\ 2^{2/3} \tan ^{-1}\left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} x\right )}{\sqrt {1-x^3}}\right )}{\sqrt {3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.28, size = 41, normalized size = 1.02 \begin {gather*} -\frac {2\ 2^{2/3} \tan ^{-1}\left (\frac {\sqrt {1-x^3}}{\sqrt {3} \left (-1+\sqrt [3]{2} x\right )}\right )}{\sqrt {3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(2^(2/3) + 2*x)/((2^(2/3) - x)*Sqrt[1 - x^3]),x]

[Out]

(-2*2^(2/3)*ArcTan[Sqrt[1 - x^3]/(Sqrt[3]*(-1 + 2^(1/3)*x))])/Sqrt[3]

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 1.30, size = 253, normalized size = 6.32

method result size
trager \(\frac {\RootOf \left (\textit {\_Z}^{2}+6 \,2^{\frac {1}{3}}\right ) \ln \left (\frac {12 \sqrt {-x^{3}+1}\, x -3 \RootOf \left (\textit {\_Z}^{2}+6 \,2^{\frac {1}{3}}\right ) 2^{\frac {2}{3}} x^{2}-\RootOf \left (\textit {\_Z}^{2}+6 \,2^{\frac {1}{3}}\right ) x^{3}-6 \sqrt {-x^{3}+1}\, 2^{\frac {2}{3}}+6 \RootOf \left (\textit {\_Z}^{2}+6 \,2^{\frac {1}{3}}\right ) 2^{\frac {1}{3}} x -2 \RootOf \left (\textit {\_Z}^{2}+6 \,2^{\frac {1}{3}}\right )}{\left (2^{\frac {1}{3}} x -2\right )^{3}}\right )}{3}\) \(112\)
default \(\frac {4 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \EllipticF \left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}}+\frac {2 i 2^{\frac {2}{3}} \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \frac {i \sqrt {3}}{-\frac {1}{2}+\frac {i \sqrt {3}}{2}-2^{\frac {2}{3}}}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {-x^{3}+1}\, \left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}-2^{\frac {2}{3}}\right )}\) \(253\)
elliptic \(\frac {4 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \EllipticF \left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}}+\frac {2 i 2^{\frac {2}{3}} \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \frac {i \sqrt {3}}{-\frac {1}{2}+\frac {i \sqrt {3}}{2}-2^{\frac {2}{3}}}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {-x^{3}+1}\, \left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}-2^{\frac {2}{3}}\right )}\) \(253\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2^(2/3)+2*x)/(2^(2/3)-x)/(-x^3+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

4/3*I*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((-1+x)/(-3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x+1/2+1/2*I*3^(
1/2))*3^(1/2))^(1/2)/(-x^3+1)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),(I*3^(1/2)/(
-3/2+1/2*I*3^(1/2)))^(1/2))+2*I*2^(2/3)*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((-1+x)/(-3/2+1/2*I*3^
(1/2)))^(1/2)*(-I*(x+1/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(-x^3+1)^(1/2)/(-1/2+1/2*I*3^(1/2)-2^(2/3))*EllipticPi(
1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(-1/2+1/2*I*3^(1/2)-2^(2/3)),(I*3^(1/2)/(-3/2+1/
2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2^(2/3)+2*x)/(2^(2/3)-x)/(-x^3+1)^(1/2),x, algorithm="maxima")

[Out]

-integrate((2*x + 2^(2/3))/(sqrt(-x^3 + 1)*(x - 2^(2/3))), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 76 vs. \(2 (30) = 60\).
time = 0.44, size = 76, normalized size = 1.90 \begin {gather*} -\frac {1}{3} \, \sqrt {6} 2^{\frac {1}{6}} \arctan \left (\frac {\sqrt {6} 2^{\frac {1}{6}} {\left (2 \, x^{5} - 2 \, x^{2} + 2^{\frac {2}{3}} {\left (7 \, x^{4} - 4 \, x\right )} - 2^{\frac {1}{3}} {\left (5 \, x^{3} - 2\right )}\right )} \sqrt {-x^{3} + 1}}{12 \, {\left (2 \, x^{6} - 3 \, x^{3} + 1\right )}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2^(2/3)+2*x)/(2^(2/3)-x)/(-x^3+1)^(1/2),x, algorithm="fricas")

[Out]

-1/3*sqrt(6)*2^(1/6)*arctan(1/12*sqrt(6)*2^(1/6)*(2*x^5 - 2*x^2 + 2^(2/3)*(7*x^4 - 4*x) - 2^(1/3)*(5*x^3 - 2))
*sqrt(-x^3 + 1)/(2*x^6 - 3*x^3 + 1))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {2^{\frac {2}{3}}}{x \sqrt {1 - x^{3}} - 2^{\frac {2}{3}} \sqrt {1 - x^{3}}}\, dx - \int \frac {2 x}{x \sqrt {1 - x^{3}} - 2^{\frac {2}{3}} \sqrt {1 - x^{3}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2**(2/3)+2*x)/(2**(2/3)-x)/(-x**3+1)**(1/2),x)

[Out]

-Integral(2**(2/3)/(x*sqrt(1 - x**3) - 2**(2/3)*sqrt(1 - x**3)), x) - Integral(2*x/(x*sqrt(1 - x**3) - 2**(2/3
)*sqrt(1 - x**3)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2^(2/3)+2*x)/(2^(2/3)-x)/(-x^3+1)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{1,[2]%%%} / %%%{%%{[2,0]:[1,0,0,-2]%%},[2]%%%} Error: Ba
d Argument

________________________________________________________________________________________

Mupad [B]
time = 3.63, size = 74, normalized size = 1.85 \begin {gather*} \frac {2^{2/3}\,\sqrt {3}\,\ln \left (\frac {\left (\sqrt {1-x^3}-\sqrt {3}\,1{}\mathrm {i}+2^{1/3}\,\sqrt {3}\,x\,1{}\mathrm {i}\right )\,{\left (\sqrt {3}\,1{}\mathrm {i}+\sqrt {1-x^3}-2^{1/3}\,\sqrt {3}\,x\,1{}\mathrm {i}\right )}^3}{{\left (x-2^{2/3}\right )}^6}\right )\,1{}\mathrm {i}}{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(2*x + 2^(2/3))/((1 - x^3)^(1/2)*(x - 2^(2/3))),x)

[Out]

(2^(2/3)*3^(1/2)*log((((1 - x^3)^(1/2) - 3^(1/2)*1i + 2^(1/3)*3^(1/2)*x*1i)*(3^(1/2)*1i + (1 - x^3)^(1/2) - 2^
(1/3)*3^(1/2)*x*1i)^3)/(x - 2^(2/3))^6)*1i)/3

________________________________________________________________________________________