3.7.91 \(\int \frac {1}{\sqrt {\sqrt {x}+x}} \, dx\) [691]

Optimal. Leaf size=34 \[ 2 \sqrt {\sqrt {x}+x}-2 \tanh ^{-1}\left (\frac {\sqrt {x}}{\sqrt {\sqrt {x}+x}}\right ) \]

[Out]

-2*arctanh(x^(1/2)/(x+x^(1/2))^(1/2))+2*(x+x^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 34, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {2035, 2038, 634, 212} \begin {gather*} 2 \sqrt {x+\sqrt {x}}-2 \tanh ^{-1}\left (\frac {\sqrt {x}}{\sqrt {x+\sqrt {x}}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[Sqrt[x] + x],x]

[Out]

2*Sqrt[Sqrt[x] + x] - 2*ArcTanh[Sqrt[x]/Sqrt[Sqrt[x] + x]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 634

Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^2
]], x] /; FreeQ[{b, c}, x]

Rule 2035

Int[1/Sqrt[(a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Simp[-2*(Sqrt[a*x^j + b*x^n]/(b*(n - 2)*x^(n - 1
))), x] - Dist[a*((2*n - j - 2)/(b*(n - 2))), Int[1/(x^(n - j)*Sqrt[a*x^j + b*x^n]), x], x] /; FreeQ[{a, b}, x
] && LtQ[2*(n - 1), j, n]

Rule 2038

Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[(a*x^Simplify[j/n]
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && IntegerQ[Simplify[j
/n]] && EqQ[Simplify[m - n + 1], 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {\sqrt {x}+x}} \, dx &=2 \sqrt {\sqrt {x}+x}-\frac {1}{2} \int \frac {1}{\sqrt {x} \sqrt {\sqrt {x}+x}} \, dx\\ &=2 \sqrt {\sqrt {x}+x}-\text {Subst}\left (\int \frac {1}{\sqrt {x+x^2}} \, dx,x,\sqrt {x}\right )\\ &=2 \sqrt {\sqrt {x}+x}-2 \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt {\sqrt {x}+x}}\right )\\ &=2 \sqrt {\sqrt {x}+x}-2 \tanh ^{-1}\left (\frac {\sqrt {x}}{\sqrt {\sqrt {x}+x}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 37, normalized size = 1.09 \begin {gather*} 2 \sqrt {\sqrt {x}+x}+\log \left (-1-2 \sqrt {x}+2 \sqrt {\sqrt {x}+x}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[Sqrt[x] + x],x]

[Out]

2*Sqrt[Sqrt[x] + x] + Log[-1 - 2*Sqrt[x] + 2*Sqrt[Sqrt[x] + x]]

________________________________________________________________________________________

Maple [A]
time = 0.38, size = 45, normalized size = 1.32

method result size
derivativedivides \(2 \sqrt {x +\sqrt {x}}-\ln \left (\frac {1}{2}+\sqrt {x}+\sqrt {x +\sqrt {x}}\right )\) \(26\)
meijerg \(\frac {2 \sqrt {\pi }\, x^{\frac {1}{4}} \sqrt {1+\sqrt {x}}-2 \sqrt {\pi }\, \arcsinh \left (x^{\frac {1}{4}}\right )}{\sqrt {\pi }}\) \(30\)
default \(\frac {\sqrt {x +\sqrt {x}}\, \left (2 \sqrt {x +\sqrt {x}}-\ln \left (\frac {1}{2}+\sqrt {x}+\sqrt {x +\sqrt {x}}\right )\right )}{\sqrt {\sqrt {x}\, \left (1+\sqrt {x}\right )}}\) \(45\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x+x^(1/2))^(1/2),x,method=_RETURNVERBOSE)

[Out]

(x+x^(1/2))^(1/2)/(x^(1/2)*(1+x^(1/2)))^(1/2)*(2*(x+x^(1/2))^(1/2)-ln(1/2+x^(1/2)+(x+x^(1/2))^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x+x^(1/2))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(x + sqrt(x)), x)

________________________________________________________________________________________

Fricas [A]
time = 0.56, size = 39, normalized size = 1.15 \begin {gather*} 2 \, \sqrt {x + \sqrt {x}} + \frac {1}{2} \, \log \left (4 \, \sqrt {x + \sqrt {x}} {\left (2 \, \sqrt {x} + 1\right )} - 8 \, x - 8 \, \sqrt {x} - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x+x^(1/2))^(1/2),x, algorithm="fricas")

[Out]

2*sqrt(x + sqrt(x)) + 1/2*log(4*sqrt(x + sqrt(x))*(2*sqrt(x) + 1) - 8*x - 8*sqrt(x) - 1)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {\sqrt {x} + x}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x+x**(1/2))**(1/2),x)

[Out]

Integral(1/sqrt(sqrt(x) + x), x)

________________________________________________________________________________________

Giac [A]
time = 2.08, size = 27, normalized size = 0.79 \begin {gather*} 2 \, \sqrt {x + \sqrt {x}} + \log \left (-2 \, \sqrt {x + \sqrt {x}} + 2 \, \sqrt {x} + 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x+x^(1/2))^(1/2),x, algorithm="giac")

[Out]

2*sqrt(x + sqrt(x)) + log(-2*sqrt(x + sqrt(x)) + 2*sqrt(x) + 1)

________________________________________________________________________________________

Mupad [B]
time = 3.33, size = 39, normalized size = 1.15 \begin {gather*} \frac {2\,\sqrt {x}\,\left (\sqrt {x}+1\right )+x^{1/4}\,\mathrm {asin}\left (x^{1/4}\,1{}\mathrm {i}\right )\,\sqrt {\sqrt {x}+1}\,2{}\mathrm {i}}{\sqrt {x+\sqrt {x}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x + x^(1/2))^(1/2),x)

[Out]

(2*x^(1/2)*(x^(1/2) + 1) + x^(1/4)*asin(x^(1/4)*1i)*(x^(1/2) + 1)^(1/2)*2i)/(x + x^(1/2))^(1/2)

________________________________________________________________________________________