3.8.87 \(\int x \sqrt {a+8 x-8 x^2+4 x^3-x^4} \, dx\) [787]

Optimal. Leaf size=466 \[ \frac {1}{4} \left (1+(-1+x)^2\right ) \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}-\frac {2 \left (1-\sqrt {4+a}\right ) \left (1+\frac {(-1+x)^2}{1-\sqrt {4+a}}\right ) (-1+x)}{3 \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}+\frac {1}{3} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4} (-1+x)+\frac {1}{4} (4+a) \tan ^{-1}\left (\frac {1+(-1+x)^2}{\sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}\right )+\frac {2 \left (1-\sqrt {4+a}\right ) \sqrt {1+\sqrt {4+a}} \left (1+\frac {(-1+x)^2}{1-\sqrt {4+a}}\right ) E\left (\tan ^{-1}\left (\frac {-1+x}{\sqrt {1+\sqrt {4+a}}}\right )|-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{3 \sqrt {\frac {1+\frac {(-1+x)^2}{1-\sqrt {4+a}}}{1+\frac {(-1+x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}+\frac {2 (3+a) \sqrt {1+\sqrt {4+a}} \left (1+\frac {(-1+x)^2}{1-\sqrt {4+a}}\right ) F\left (\tan ^{-1}\left (\frac {-1+x}{\sqrt {1+\sqrt {4+a}}}\right )|-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{3 \sqrt {\frac {1+\frac {(-1+x)^2}{1-\sqrt {4+a}}}{1+\frac {(-1+x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}} \]

[Out]

1/4*(4+a)*arctan((1+(-1+x)^2)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2))-2/3*(-1+x)*(1+(-1+x)^2/(1-(4+a)^(1/2)))*(1-(4+a
)^(1/2))/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)+1/4*(1+(-1+x)^2)*(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)+1/3*(-1+x)*(3+a-2*(-
1+x)^2-(-1+x)^4)^(1/2)+2/3*(3+a)*(1/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)*(1+(-1+x)^2/(1+(4+a)^(1/2)))^(1/2)*Ell
ipticF((-1+x)/(1+(4+a)^(1/2))^(1/2)/(1+(-1+x)^2/(1+(4+a)^(1/2)))^(1/2),(-2*(4+a)^(1/2)/(1-(4+a)^(1/2)))^(1/2))
*(1+(-1+x)^2/(1-(4+a)^(1/2)))*(1+(4+a)^(1/2))^(1/2)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)/((1+(-1+x)^2/(1-(4+a)^(1/2
)))/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)+2/3*(1/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)*(1+(-1+x)^2/(1+(4+a)^(1/2))
)^(1/2)*EllipticE((-1+x)/(1+(4+a)^(1/2))^(1/2)/(1+(-1+x)^2/(1+(4+a)^(1/2)))^(1/2),(-2*(4+a)^(1/2)/(1-(4+a)^(1/
2)))^(1/2))*(1+(-1+x)^2/(1-(4+a)^(1/2)))*(1-(4+a)^(1/2))*(1+(4+a)^(1/2))^(1/2)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)
/((1+(-1+x)^2/(1-(4+a)^(1/2)))/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.33, antiderivative size = 466, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 12, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {1694, 1687, 1105, 1216, 545, 429, 506, 422, 1121, 626, 635, 210} \begin {gather*} \frac {1}{4} (a+4) \text {ArcTan}\left (\frac {(x-1)^2+1}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}\right )+\frac {2 (a+3) \sqrt {\sqrt {a+4}+1} \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right ) F\left (\text {ArcTan}\left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{3 \sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {2 \left (1-\sqrt {a+4}\right ) \sqrt {\sqrt {a+4}+1} \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right ) E\left (\text {ArcTan}\left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{3 \sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {1}{4} \left ((x-1)^2+1\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}+\frac {1}{3} (x-1) \sqrt {a-(x-1)^4-2 (x-1)^2+3}-\frac {2 \left (1-\sqrt {a+4}\right ) (x-1) \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right )}{3 \sqrt {a-(x-1)^4-2 (x-1)^2+3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4],x]

[Out]

((1 + (-1 + x)^2)*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4])/4 - (2*(1 - Sqrt[4 + a])*(1 + (-1 + x)^2/(1 - Sqrt[
4 + a]))*(-1 + x))/(3*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]) + (Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]*(-1
+ x))/3 + ((4 + a)*ArcTan[(1 + (-1 + x)^2)/Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]])/4 + (2*(1 - Sqrt[4 + a])*
Sqrt[1 + Sqrt[4 + a]]*(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))*EllipticE[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2
*Sqrt[4 + a])/(1 - Sqrt[4 + a])])/(3*Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a])
)]*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]) + (2*(3 + a)*Sqrt[1 + Sqrt[4 + a]]*(1 + (-1 + x)^2/(1 - Sqrt[4 + a
]))*EllipticF[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4 + a])])/(3*Sqrt[(1 + (-1 +
x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a]))]*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 626

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x)*((a + b*x + c*x^2)^p/(2*c*(2*p + 1
))), x] - Dist[p*((b^2 - 4*a*c)/(2*c*(2*p + 1))), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1105

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*((a + b*x^2 + c*x^4)^p/(4*p + 1)), x] + Dis
t[2*(p/(4*p + 1)), Int[(2*a + b*x^2)*(a + b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4
*a*c, 0] && GtQ[p, 0] && IntegerQ[2*p]

Rule 1121

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 1216

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[Sqrt[1 + 2*c*(x^2/(b - q))]*(Sqrt[1 + 2*c*(x^2/(b + q))]/Sqrt[a + b*x^2 + c*x^4]), Int[(d + e*x^2)/(Sqr
t[1 + 2*c*(x^2/(b - q))]*Sqrt[1 + 2*c*(x^2/(b + q))]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c
, 0] && NegQ[c/a]

Rule 1687

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 1694

Int[(Pq_)*(Q4_)^(p_), x_Symbol] :> With[{a = Coeff[Q4, x, 0], b = Coeff[Q4, x, 1], c = Coeff[Q4, x, 2], d = Co
eff[Q4, x, 3], e = Coeff[Q4, x, 4]}, Subst[Int[SimplifyIntegrand[(Pq /. x -> -d/(4*e) + x)*(a + d^4/(256*e^3)
- b*(d/(8*e)) + (c - 3*(d^2/(8*e)))*x^2 + e*x^4)^p, x], x], x, d/(4*e) + x] /; EqQ[d^3 - 4*c*d*e + 8*b*e^2, 0]
 && NeQ[d, 0]] /; FreeQ[p, x] && PolyQ[Pq, x] && PolyQ[Q4, x, 4] &&  !IGtQ[p, 0]

Rubi steps

\begin {align*} \int x \sqrt {a+8 x-8 x^2+4 x^3-x^4} \, dx &=\text {Subst}\left (\int (1+x) \sqrt {3+a-2 x^2-x^4} \, dx,x,-1+x\right )\\ &=\text {Subst}\left (\int \sqrt {3+a-2 x^2-x^4} \, dx,x,-1+x\right )+\text {Subst}\left (\int x \sqrt {3+a-2 x^2-x^4} \, dx,x,-1+x\right )\\ &=\frac {1}{3} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4} (-1+x)+\frac {1}{3} \text {Subst}\left (\int \frac {2 (3+a)-2 x^2}{\sqrt {3+a-2 x^2-x^4}} \, dx,x,-1+x\right )+\frac {1}{2} \text {Subst}\left (\int \sqrt {3+a-2 x-x^2} \, dx,x,(-1+x)^2\right )\\ &=\frac {1}{4} \sqrt {3+a-2 (1-x)^2-(1-x)^4} \left (1+(-1+x)^2\right )+\frac {1}{3} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4} (-1+x)+\frac {1}{4} (4+a) \text {Subst}\left (\int \frac {1}{\sqrt {3+a-2 x-x^2}} \, dx,x,(-1+x)^2\right )+\frac {\left (\sqrt {1-\frac {2 (-1+x)^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 (-1+x)^2}{-2+2 \sqrt {4+a}}}\right ) \text {Subst}\left (\int \frac {2 (3+a)-2 x^2}{\sqrt {1-\frac {2 x^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 x^2}{-2+2 \sqrt {4+a}}}} \, dx,x,-1+x\right )}{3 \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}\\ &=\frac {1}{4} \sqrt {3+a-2 (1-x)^2-(1-x)^4} \left (1+(-1+x)^2\right )+\frac {1}{3} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4} (-1+x)+\frac {1}{2} (4+a) \text {Subst}\left (\int \frac {1}{-4-x^2} \, dx,x,-\frac {2 \left (1+(-1+x)^2\right )}{\sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}\right )-\frac {\left (2 \sqrt {1-\frac {2 (-1+x)^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 (-1+x)^2}{-2+2 \sqrt {4+a}}}\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {1-\frac {2 x^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 x^2}{-2+2 \sqrt {4+a}}}} \, dx,x,-1+x\right )}{3 \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}+\frac {\left (2 (3+a) \sqrt {1-\frac {2 (-1+x)^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 (-1+x)^2}{-2+2 \sqrt {4+a}}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {2 x^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 x^2}{-2+2 \sqrt {4+a}}}} \, dx,x,-1+x\right )}{3 \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}\\ &=\frac {1}{4} \sqrt {3+a-2 (1-x)^2-(1-x)^4} \left (1+(-1+x)^2\right )+\frac {2 \left (1-\sqrt {4+a}\right ) \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) (1-x)}{3 \sqrt {3+a-2 (1-x)^2-(1-x)^4}}+\frac {1}{3} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4} (-1+x)+\frac {1}{4} (4+a) \tan ^{-1}\left (\frac {1+(-1+x)^2}{\sqrt {3+a-2 (1-x)^2-(1-x)^4}}\right )-\frac {2 (3+a) \sqrt {1+\sqrt {4+a}} \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) F\left (\tan ^{-1}\left (\frac {1-x}{\sqrt {1+\sqrt {4+a}}}\right )|-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{3 \sqrt {\frac {1+\frac {(1-x)^2}{1-\sqrt {4+a}}}{1+\frac {(1-x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (1-x)^2-(1-x)^4}}+\frac {\left (2 \left (1-\sqrt {4+a}\right ) \sqrt {1-\frac {2 (-1+x)^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 (-1+x)^2}{-2+2 \sqrt {4+a}}}\right ) \text {Subst}\left (\int \frac {\sqrt {1-\frac {2 x^2}{-2+2 \sqrt {4+a}}}}{\left (1-\frac {2 x^2}{-2-2 \sqrt {4+a}}\right )^{3/2}} \, dx,x,-1+x\right )}{3 \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}\\ &=\frac {1}{4} \sqrt {3+a-2 (1-x)^2-(1-x)^4} \left (1+(-1+x)^2\right )+\frac {2 \left (1-\sqrt {4+a}\right ) \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) (1-x)}{3 \sqrt {3+a-2 (1-x)^2-(1-x)^4}}+\frac {1}{3} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4} (-1+x)+\frac {1}{4} (4+a) \tan ^{-1}\left (\frac {1+(-1+x)^2}{\sqrt {3+a-2 (1-x)^2-(1-x)^4}}\right )-\frac {2 \left (1-\sqrt {4+a}\right ) \sqrt {1+\sqrt {4+a}} \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) E\left (\tan ^{-1}\left (\frac {1-x}{\sqrt {1+\sqrt {4+a}}}\right )|-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{3 \sqrt {\frac {1+\frac {(1-x)^2}{1-\sqrt {4+a}}}{1+\frac {(1-x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (1-x)^2-(1-x)^4}}-\frac {2 (3+a) \sqrt {1+\sqrt {4+a}} \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) F\left (\tan ^{-1}\left (\frac {1-x}{\sqrt {1+\sqrt {4+a}}}\right )|-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{3 \sqrt {\frac {1+\frac {(1-x)^2}{1-\sqrt {4+a}}}{1+\frac {(1-x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (1-x)^2-(1-x)^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(4389\) vs. \(2(466)=932\).
time = 13.08, size = 4389, normalized size = 9.42 \begin {gather*} \text {Result too large to show} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4],x]

[Out]

(1/6 - x/6 + x^2/4)*Sqrt[a - x*(-8 + 8*x - 4*x^2 + x^3)] + (Sqrt[a - x*(-8 + 8*x - 4*x^2 + x^3)]*((-8*(-Sqrt[-
1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((-Sqrt[-1 - Sqrt[4 + a]]
+ Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]
)*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-
1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-
1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a
]] + x))]*EllipticF[ArcSin[Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a
]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]], ((-Sqrt[-1 -
 Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))/((Sqrt[-1 - Sqrt[4
+ a]] - Sqrt[-1 + Sqrt[4 + a]])*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))])/(Sqrt[-1 - Sqrt[4 + a]]*
(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]) + (2*a*(-Sqrt[-1 - Sqr
t[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[
-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 -
 Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqr
t[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqr
t[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)
)]*EllipticF[ArcSin[Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x)
)/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]], ((-Sqrt[-1 - Sqrt[4
 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))/((Sqrt[-1 - Sqrt[4 + a]] -
 Sqrt[-1 + Sqrt[4 + a]])*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))])/(Sqrt[-1 - Sqrt[4 + a]]*(-Sqrt[
-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]) + (40*(-Sqrt[-1 - Sqrt[4 + a]
] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt
[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 -
 Sqrt[4 + a]] - x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]]
+ Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 + Sqr
t[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*((-1 -
Sqrt[-1 - Sqrt[4 + a]])*EllipticF[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1
 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]],
(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2] + 2*S
qrt[-1 - Sqrt[4 + a]]*EllipticPi[(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])/(-Sqrt[-1 - Sqrt[4 + a]] +
Sqrt[-1 + Sqrt[4 + a]]), ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4
 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1
- Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2]))/(Sqrt[-1 - S
qrt[4 + a]]*(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]) + (6*a*(-Sq
rt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((Sqrt[-1 - Sqrt[4 + a
]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 +
a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt
[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*
(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 +
 a]] + x))]*((-1 - Sqrt[-1 - Sqrt[4 + a]])*EllipticF[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 +
 a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqr
t[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqr
t[4 + a]])^2] + 2*Sqrt[-1 - Sqrt[4 + a]]*EllipticPi[(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])/(-Sqrt[-
1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]), ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1
 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]]
 - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + S...

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(2550\) vs. \(2(516)=1032\).
time = 0.05, size = 2551, normalized size = 5.47

method result size
default \(\text {Expression too large to display}\) \(2551\)
elliptic \(\text {Expression too large to display}\) \(2551\)
risch \(\text {Expression too large to display}\) \(3034\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/4*x^2*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2)-1/6*x*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2)+1/6*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2)
-(1/6*a-2/3)*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))
*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(
1/2)*(x-1+(-1+(4+a)^(1/2))^(1/2))^2*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1-(-1-(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^
(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1+(-1-(4+a)^(1
/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)/(-(-1-(4+a)^(
1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-1+(4+a)^(1/2))^(1/2)/(-(x-1-(-1+(4+a)^(1/2))^(1/2))*(x-1+(-1+(4+a)^(1/2)
)^(1/2))*(x-1-(-1-(4+a)^(1/2))^(1/2))*(x-1+(-1-(4+a)^(1/2))^(1/2)))^(1/2)*EllipticF(((-(-1-(4+a)^(1/2))^(1/2)+
(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1
+(4+a)^(1/2))^(1/2)))^(1/2),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a
)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2
)))^(1/2))-(1/2*a+10/3)*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1
/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2)
)^(1/2)))^(1/2)*(x-1+(-1+(4+a)^(1/2))^(1/2))^2*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1-(-1-(4+a)^(1/2))^(1/2))/((-1-(4
+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1+(
-1-(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)/(-
(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-1+(4+a)^(1/2))^(1/2)/(-(x-1-(-1+(4+a)^(1/2))^(1/2))*(x-1+(-1+
(4+a)^(1/2))^(1/2))*(x-1-(-1-(4+a)^(1/2))^(1/2))*(x-1+(-1-(4+a)^(1/2))^(1/2)))^(1/2)*((1-(-1+(4+a)^(1/2))^(1/2
))*EllipticF(((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))
^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^
(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(
4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))+2*(-1+(4+a)^(1/2))^(1/2)*EllipticPi(((-(-1-(4+a)^(1/2))^(1/2
)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(
-1+(4+a)^(1/2))^(1/2)))^(1/2),(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4
+a)^(1/2))^(1/2)),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(
1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))
)-2/3*((x-1-(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1-(4+a)^(1/2))^(1/2))*(x-1+(-1-(4+a)^(1/2))^(1/2))+((-1-(4+a)^(1/2)
)^(1/2)+(-1+(4+a)^(1/2))^(1/2))*((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))
/(-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(x-1+(-1+(4+a)^(1/2))^(1
/2))^2*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1-(-1-(4+a)^(1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))
/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(4+a)^(1/2))^(1/2)*(x-1+(-1-(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2)
)^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2)*(-1/2*((1-(-1+(4+a)^(1/2))^(1/2))*(1+(-1+(
4+a)^(1/2))^(1/2))-(1-(-1-(4+a)^(1/2))^(1/2))*(1+(-1+(4+a)^(1/2))^(1/2))+(1-(-1-(4+a)^(1/2))^(1/2))*(1-(-1+(4+
a)^(1/2))^(1/2))+(1-(-1+(4+a)^(1/2))^(1/2))^2)/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-1+(4+a)^(1/2
))^(1/2)*EllipticF(((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^
(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(
1/2))^(1/2))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/
((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))-1/2*(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*E
llipticE(((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/
2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2
))*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))/((-1-(4+a)
^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)))^(1/2))/(-1+(4+a)^(1/2))^(1/2)-4/(-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2
))^(1/2))*EllipticPi(((-(-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2))*(x-1-(-1+(4+a)^(1/2))^(1/2))/(-(-1-(4+a
)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))/(x-1+(-1+(4+a)^(1/2))^(1/2)))^(1/2),((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(
1/2))^(1/2))/((-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2)),((-(-1-(4+a)^(1/2))^(1/2)-(-1+(4+a)^(1/2))^(1/2))
*((-1-(4+a)^(1/2))^(1/2)+(-1+(4+a)^(1/2))^(1/2)...

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)*x, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)*x, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x \sqrt {a - x^{4} + 4 x^{3} - 8 x^{2} + 8 x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-x**4+4*x**3-8*x**2+a+8*x)**(1/2),x)

[Out]

Integral(x*sqrt(a - x**4 + 4*x**3 - 8*x**2 + 8*x), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)*x, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int x\,\sqrt {-x^4+4\,x^3-8\,x^2+8\,x+a} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(1/2),x)

[Out]

int(x*(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(1/2), x)

________________________________________________________________________________________