3.1.64 \(\int \frac {e+f x}{(c+d x) \sqrt {c^3+4 d^3 x^3}} \, dx\) [64]

Optimal. Leaf size=265 \[ \frac {2 (d e-c f) \tan ^{-1}\left (\frac {\sqrt {3} \sqrt {c} (c+2 d x)}{\sqrt {c^3+4 d^3 x^3}}\right )}{3 \sqrt {3} c^{3/2} d^2}+\frac {\sqrt [3]{2} \sqrt {2+\sqrt {3}} (2 d e+c f) \left (c+2^{2/3} d x\right ) \sqrt {\frac {c^2-2^{2/3} c d x+2 \sqrt [3]{2} d^2 x^2}{\left (\left (1+\sqrt {3}\right ) c+2^{2/3} d x\right )^2}} F\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) c+2^{2/3} d x}{\left (1+\sqrt {3}\right ) c+2^{2/3} d x}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} c d^2 \sqrt {\frac {c \left (c+2^{2/3} d x\right )}{\left (\left (1+\sqrt {3}\right ) c+2^{2/3} d x\right )^2}} \sqrt {c^3+4 d^3 x^3}} \]

[Out]

2/9*(-c*f+d*e)*arctan((2*d*x+c)*3^(1/2)*c^(1/2)/(4*d^3*x^3+c^3)^(1/2))/c^(3/2)/d^2*3^(1/2)+1/9*2^(1/3)*(c*f+2*
d*e)*(c+2^(2/3)*d*x)*EllipticF((2^(2/3)*d*x+c*(1-3^(1/2)))/(2^(2/3)*d*x+c*(1+3^(1/2))),I*3^(1/2)+2*I)*(1/2*6^(
1/2)+1/2*2^(1/2))*((c^2-2^(2/3)*c*d*x+2*2^(1/3)*d^2*x^2)/(2^(2/3)*d*x+c*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/c/d^2/(4
*d^3*x^3+c^3)^(1/2)/(c*(c+2^(2/3)*d*x)/(2^(2/3)*d*x+c*(1+3^(1/2)))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.22, antiderivative size = 265, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {2164, 224, 2162, 209} \begin {gather*} \frac {\sqrt [3]{2} \sqrt {2+\sqrt {3}} \left (c+2^{2/3} d x\right ) \sqrt {\frac {c^2-2^{2/3} c d x+2 \sqrt [3]{2} d^2 x^2}{\left (\left (1+\sqrt {3}\right ) c+2^{2/3} d x\right )^2}} (c f+2 d e) F\left (\text {ArcSin}\left (\frac {\left (1-\sqrt {3}\right ) c+2^{2/3} d x}{\left (1+\sqrt {3}\right ) c+2^{2/3} d x}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} c d^2 \sqrt {\frac {c \left (c+2^{2/3} d x\right )}{\left (\left (1+\sqrt {3}\right ) c+2^{2/3} d x\right )^2}} \sqrt {c^3+4 d^3 x^3}}+\frac {2 \text {ArcTan}\left (\frac {\sqrt {3} \sqrt {c} (c+2 d x)}{\sqrt {c^3+4 d^3 x^3}}\right ) (d e-c f)}{3 \sqrt {3} c^{3/2} d^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e + f*x)/((c + d*x)*Sqrt[c^3 + 4*d^3*x^3]),x]

[Out]

(2*(d*e - c*f)*ArcTan[(Sqrt[3]*Sqrt[c]*(c + 2*d*x))/Sqrt[c^3 + 4*d^3*x^3]])/(3*Sqrt[3]*c^(3/2)*d^2) + (2^(1/3)
*Sqrt[2 + Sqrt[3]]*(2*d*e + c*f)*(c + 2^(2/3)*d*x)*Sqrt[(c^2 - 2^(2/3)*c*d*x + 2*2^(1/3)*d^2*x^2)/((1 + Sqrt[3
])*c + 2^(2/3)*d*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*c + 2^(2/3)*d*x)/((1 + Sqrt[3])*c + 2^(2/3)*d*x)], -7 -
 4*Sqrt[3]])/(3*3^(1/4)*c*d^2*Sqrt[(c*(c + 2^(2/3)*d*x))/((1 + Sqrt[3])*c + 2^(2/3)*d*x)^2]*Sqrt[c^3 + 4*d^3*x
^3])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 2162

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[2*(e/d), Subst[Int[
1/(1 + 3*a*x^2), x], x, (1 + 2*d*(x/c))/Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f,
 0] && EqQ[b*c^3 - 4*a*d^3, 0] && EqQ[2*d*e + c*f, 0]

Rule 2164

Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[(2*d*e + c*f)/(3*c
*d), Int[1/Sqrt[a + b*x^3], x], x] + Dist[(d*e - c*f)/(3*c*d), Int[(c - 2*d*x)/((c + d*x)*Sqrt[a + b*x^3]), x]
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && (EqQ[b*c^3 - 4*a*d^3, 0] || EqQ[b*c^3 + 8*a*d^3,
0]) && NeQ[2*d*e + c*f, 0]

Rubi steps

\begin {align*} \int \frac {e+f x}{(c+d x) \sqrt {c^3+4 d^3 x^3}} \, dx &=\frac {(d e-c f) \int \frac {c-2 d x}{(c+d x) \sqrt {c^3+4 d^3 x^3}} \, dx}{3 c d}+\frac {(2 d e+c f) \int \frac {1}{\sqrt {c^3+4 d^3 x^3}} \, dx}{3 c d}\\ &=\frac {\sqrt [3]{2} \sqrt {2+\sqrt {3}} (2 d e+c f) \left (c+2^{2/3} d x\right ) \sqrt {\frac {c^2-2^{2/3} c d x+2 \sqrt [3]{2} d^2 x^2}{\left (\left (1+\sqrt {3}\right ) c+2^{2/3} d x\right )^2}} F\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) c+2^{2/3} d x}{\left (1+\sqrt {3}\right ) c+2^{2/3} d x}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} c d^2 \sqrt {\frac {c \left (c+2^{2/3} d x\right )}{\left (\left (1+\sqrt {3}\right ) c+2^{2/3} d x\right )^2}} \sqrt {c^3+4 d^3 x^3}}+\frac {(2 (d e-c f)) \text {Subst}\left (\int \frac {1}{1+3 c^3 x^2} \, dx,x,\frac {1+\frac {2 d x}{c}}{\sqrt {c^3+4 d^3 x^3}}\right )}{3 d^2}\\ &=\frac {2 (d e-c f) \tan ^{-1}\left (\frac {\sqrt {3} \sqrt {c} (c+2 d x)}{\sqrt {c^3+4 d^3 x^3}}\right )}{3 \sqrt {3} c^{3/2} d^2}+\frac {\sqrt [3]{2} \sqrt {2+\sqrt {3}} (2 d e+c f) \left (c+2^{2/3} d x\right ) \sqrt {\frac {c^2-2^{2/3} c d x+2 \sqrt [3]{2} d^2 x^2}{\left (\left (1+\sqrt {3}\right ) c+2^{2/3} d x\right )^2}} F\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) c+2^{2/3} d x}{\left (1+\sqrt {3}\right ) c+2^{2/3} d x}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} c d^2 \sqrt {\frac {c \left (c+2^{2/3} d x\right )}{\left (\left (1+\sqrt {3}\right ) c+2^{2/3} d x\right )^2}} \sqrt {c^3+4 d^3 x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 11.00, size = 380, normalized size = 1.43 \begin {gather*} \frac {\sqrt [6]{2} \sqrt {\frac {\sqrt [3]{2} c+2 d x}{\left (1+\sqrt [3]{-1}\right ) c}} \left (-f \sqrt {\frac {\sqrt [3]{-2} c-2 (-1)^{2/3} d x}{\left (1+\sqrt [3]{-1}\right ) c}} \left (\sqrt [3]{-1} \left (2+\sqrt [3]{-2}\right ) c-2 \left (\sqrt [3]{-1}+2^{2/3}\right ) d x\right ) F\left (\sin ^{-1}\left (\frac {\sqrt {\frac {\sqrt [3]{2} c+2 (-1)^{2/3} d x}{\left (1+\sqrt [3]{-1}\right ) c}}}{\sqrt [6]{2}}\right )|\sqrt [3]{-1}\right )+\frac {\sqrt [3]{-1} 2^{2/3} \left (1+\sqrt [3]{-1}\right ) (-d e+c f) \sqrt {\frac {\sqrt [3]{2} c+2 (-1)^{2/3} d x}{\left (1+\sqrt [3]{-1}\right ) c}} \sqrt {2^{2/3}-\frac {2 \sqrt [3]{2} d x}{c}+\frac {4 d^2 x^2}{c^2}} \Pi \left (\frac {i \sqrt [3]{2} \sqrt {3}}{2+\sqrt [3]{-2}};\sin ^{-1}\left (\frac {\sqrt {\frac {\sqrt [3]{2} c+2 (-1)^{2/3} d x}{\left (1+\sqrt [3]{-1}\right ) c}}}{\sqrt [6]{2}}\right )|\sqrt [3]{-1}\right )}{\sqrt {3}}\right )}{\left (2+\sqrt [3]{-2}\right ) d^2 \sqrt {\frac {\sqrt [3]{2} c+2 (-1)^{2/3} d x}{\left (1+\sqrt [3]{-1}\right ) c}} \sqrt {c^3+4 d^3 x^3}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(e + f*x)/((c + d*x)*Sqrt[c^3 + 4*d^3*x^3]),x]

[Out]

(2^(1/6)*Sqrt[(2^(1/3)*c + 2*d*x)/((1 + (-1)^(1/3))*c)]*(-(f*Sqrt[((-2)^(1/3)*c - 2*(-1)^(2/3)*d*x)/((1 + (-1)
^(1/3))*c)]*((-1)^(1/3)*(2 + (-2)^(1/3))*c - 2*((-1)^(1/3) + 2^(2/3))*d*x)*EllipticF[ArcSin[Sqrt[(2^(1/3)*c +
2*(-1)^(2/3)*d*x)/((1 + (-1)^(1/3))*c)]/2^(1/6)], (-1)^(1/3)]) + ((-1)^(1/3)*2^(2/3)*(1 + (-1)^(1/3))*(-(d*e)
+ c*f)*Sqrt[(2^(1/3)*c + 2*(-1)^(2/3)*d*x)/((1 + (-1)^(1/3))*c)]*Sqrt[2^(2/3) - (2*2^(1/3)*d*x)/c + (4*d^2*x^2
)/c^2]*EllipticPi[(I*2^(1/3)*Sqrt[3])/(2 + (-2)^(1/3)), ArcSin[Sqrt[(2^(1/3)*c + 2*(-1)^(2/3)*d*x)/((1 + (-1)^
(1/3))*c)]/2^(1/6)], (-1)^(1/3)])/Sqrt[3]))/((2 + (-2)^(1/3))*d^2*Sqrt[(2^(1/3)*c + 2*(-1)^(2/3)*d*x)/((1 + (-
1)^(1/3))*c)]*Sqrt[c^3 + 4*d^3*x^3])

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 899 vs. \(2 (216 ) = 432\).
time = 0.26, size = 900, normalized size = 3.40

method result size
default \(\text {Expression too large to display}\) \(900\)
elliptic \(\text {Expression too large to display}\) \(900\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x+e)/(d*x+c)/(4*d^3*x^3+c^3)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*f/d*((1/4*2^(1/3)-1/4*I*3^(1/2)*2^(1/3))*c/d-(1/4*2^(1/3)+1/4*I*3^(1/2)*2^(1/3))*c/d)*((x-(1/4*2^(1/3)+1/4*I
*3^(1/2)*2^(1/3))*c/d)/((1/4*2^(1/3)-1/4*I*3^(1/2)*2^(1/3))*c/d-(1/4*2^(1/3)+1/4*I*3^(1/2)*2^(1/3))*c/d))^(1/2
)*((x+1/2*2^(1/3)*c/d)/((1/4*2^(1/3)+1/4*I*3^(1/2)*2^(1/3))*c/d+1/2*2^(1/3)*c/d))^(1/2)*((x-(1/4*2^(1/3)-1/4*I
*3^(1/2)*2^(1/3))*c/d)/((1/4*2^(1/3)+1/4*I*3^(1/2)*2^(1/3))*c/d-(1/4*2^(1/3)-1/4*I*3^(1/2)*2^(1/3))*c/d))^(1/2
)/(4*d^3*x^3+c^3)^(1/2)*EllipticF(((x-(1/4*2^(1/3)+1/4*I*3^(1/2)*2^(1/3))*c/d)/((1/4*2^(1/3)-1/4*I*3^(1/2)*2^(
1/3))*c/d-(1/4*2^(1/3)+1/4*I*3^(1/2)*2^(1/3))*c/d))^(1/2),(((1/4*2^(1/3)+1/4*I*3^(1/2)*2^(1/3))*c/d-(1/4*2^(1/
3)-1/4*I*3^(1/2)*2^(1/3))*c/d)/((1/4*2^(1/3)+1/4*I*3^(1/2)*2^(1/3))*c/d+1/2*2^(1/3)*c/d))^(1/2))+2*(-c*f+d*e)/
d^2*((1/4*2^(1/3)-1/4*I*3^(1/2)*2^(1/3))*c/d-(1/4*2^(1/3)+1/4*I*3^(1/2)*2^(1/3))*c/d)*((x-(1/4*2^(1/3)+1/4*I*3
^(1/2)*2^(1/3))*c/d)/((1/4*2^(1/3)-1/4*I*3^(1/2)*2^(1/3))*c/d-(1/4*2^(1/3)+1/4*I*3^(1/2)*2^(1/3))*c/d))^(1/2)*
((x+1/2*2^(1/3)*c/d)/((1/4*2^(1/3)+1/4*I*3^(1/2)*2^(1/3))*c/d+1/2*2^(1/3)*c/d))^(1/2)*((x-(1/4*2^(1/3)-1/4*I*3
^(1/2)*2^(1/3))*c/d)/((1/4*2^(1/3)+1/4*I*3^(1/2)*2^(1/3))*c/d-(1/4*2^(1/3)-1/4*I*3^(1/2)*2^(1/3))*c/d))^(1/2)/
(4*d^3*x^3+c^3)^(1/2)/((1/4*2^(1/3)+1/4*I*3^(1/2)*2^(1/3))*c/d+c/d)*EllipticPi(((x-(1/4*2^(1/3)+1/4*I*3^(1/2)*
2^(1/3))*c/d)/((1/4*2^(1/3)-1/4*I*3^(1/2)*2^(1/3))*c/d-(1/4*2^(1/3)+1/4*I*3^(1/2)*2^(1/3))*c/d))^(1/2),((1/4*2
^(1/3)+1/4*I*3^(1/2)*2^(1/3))*c/d-(1/4*2^(1/3)-1/4*I*3^(1/2)*2^(1/3))*c/d)/((1/4*2^(1/3)+1/4*I*3^(1/2)*2^(1/3)
)*c/d+c/d),(((1/4*2^(1/3)+1/4*I*3^(1/2)*2^(1/3))*c/d-(1/4*2^(1/3)-1/4*I*3^(1/2)*2^(1/3))*c/d)/((1/4*2^(1/3)+1/
4*I*3^(1/2)*2^(1/3))*c/d+1/2*2^(1/3)*c/d))^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(d*x+c)/(4*d^3*x^3+c^3)^(1/2),x, algorithm="maxima")

[Out]

integrate((f*x + e)/(sqrt(4*d^3*x^3 + c^3)*(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.35, size = 393, normalized size = 1.48 \begin {gather*} \left [\frac {\sqrt {3} {\left (c d^{2} f - d^{3} e\right )} \sqrt {-c} \log \left (\frac {2 \, d^{6} x^{6} - 36 \, c d^{5} x^{5} - 18 \, c^{2} d^{4} x^{4} + 28 \, c^{3} d^{3} x^{3} + 18 \, c^{4} d^{2} x^{2} - c^{6} + \sqrt {3} {\left (4 \, d^{4} x^{4} - 10 \, c d^{3} x^{3} - 18 \, c^{2} d^{2} x^{2} - 8 \, c^{3} d x - c^{4}\right )} \sqrt {4 \, d^{3} x^{3} + c^{3}} \sqrt {-c}}{d^{6} x^{6} + 6 \, c d^{5} x^{5} + 15 \, c^{2} d^{4} x^{4} + 20 \, c^{3} d^{3} x^{3} + 15 \, c^{4} d^{2} x^{2} + 6 \, c^{5} d x + c^{6}}\right ) + 6 \, \sqrt {d^{3}} {\left (c^{2} f + 2 \, c d e\right )} {\rm weierstrassPInverse}\left (0, -\frac {c^{3}}{d^{3}}, x\right )}{18 \, c^{2} d^{4}}, \frac {\sqrt {3} {\left (c d^{2} f - d^{3} e\right )} \sqrt {c} \arctan \left (\frac {\sqrt {3} \sqrt {4 \, d^{3} x^{3} + c^{3}} {\left (2 \, d^{3} x^{3} - 6 \, c d^{2} x^{2} - 6 \, c^{2} d x - c^{3}\right )} \sqrt {c}}{3 \, {\left (8 \, c d^{4} x^{4} + 4 \, c^{2} d^{3} x^{3} + 2 \, c^{4} d x + c^{5}\right )}}\right ) + 3 \, \sqrt {d^{3}} {\left (c^{2} f + 2 \, c d e\right )} {\rm weierstrassPInverse}\left (0, -\frac {c^{3}}{d^{3}}, x\right )}{9 \, c^{2} d^{4}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(d*x+c)/(4*d^3*x^3+c^3)^(1/2),x, algorithm="fricas")

[Out]

[1/18*(sqrt(3)*(c*d^2*f - d^3*e)*sqrt(-c)*log((2*d^6*x^6 - 36*c*d^5*x^5 - 18*c^2*d^4*x^4 + 28*c^3*d^3*x^3 + 18
*c^4*d^2*x^2 - c^6 + sqrt(3)*(4*d^4*x^4 - 10*c*d^3*x^3 - 18*c^2*d^2*x^2 - 8*c^3*d*x - c^4)*sqrt(4*d^3*x^3 + c^
3)*sqrt(-c))/(d^6*x^6 + 6*c*d^5*x^5 + 15*c^2*d^4*x^4 + 20*c^3*d^3*x^3 + 15*c^4*d^2*x^2 + 6*c^5*d*x + c^6)) + 6
*sqrt(d^3)*(c^2*f + 2*c*d*e)*weierstrassPInverse(0, -c^3/d^3, x))/(c^2*d^4), 1/9*(sqrt(3)*(c*d^2*f - d^3*e)*sq
rt(c)*arctan(1/3*sqrt(3)*sqrt(4*d^3*x^3 + c^3)*(2*d^3*x^3 - 6*c*d^2*x^2 - 6*c^2*d*x - c^3)*sqrt(c)/(8*c*d^4*x^
4 + 4*c^2*d^3*x^3 + 2*c^4*d*x + c^5)) + 3*sqrt(d^3)*(c^2*f + 2*c*d*e)*weierstrassPInverse(0, -c^3/d^3, x))/(c^
2*d^4)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e + f x}{\left (c + d x\right ) \sqrt {c^{3} + 4 d^{3} x^{3}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(d*x+c)/(4*d**3*x**3+c**3)**(1/2),x)

[Out]

Integral((e + f*x)/((c + d*x)*sqrt(c**3 + 4*d**3*x**3)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(d*x+c)/(4*d^3*x^3+c^3)^(1/2),x, algorithm="giac")

[Out]

integrate((f*x + e)/(sqrt(4*d^3*x^3 + c^3)*(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {e+f\,x}{\sqrt {c^3+4\,d^3\,x^3}\,\left (c+d\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e + f*x)/((c^3 + 4*d^3*x^3)^(1/2)*(c + d*x)),x)

[Out]

int((e + f*x)/((c^3 + 4*d^3*x^3)^(1/2)*(c + d*x)), x)

________________________________________________________________________________________