3.10.32 \(\int x \sqrt {x+x^{3/2}} \, dx\) [932]

Optimal. Leaf size=94 \[ -\frac {32}{99} \left (x+x^{3/2}\right )^{3/2}+\frac {512 \left (x+x^{3/2}\right )^{3/2}}{3465 x^{3/2}}-\frac {256 \left (x+x^{3/2}\right )^{3/2}}{1155 x}+\frac {64 \left (x+x^{3/2}\right )^{3/2}}{231 \sqrt {x}}+\frac {4}{11} \sqrt {x} \left (x+x^{3/2}\right )^{3/2} \]

[Out]

-32/99*(x+x^(3/2))^(3/2)+512/3465*(x+x^(3/2))^(3/2)/x^(3/2)-256/1155*(x+x^(3/2))^(3/2)/x+64/231*(x+x^(3/2))^(3
/2)/x^(1/2)+4/11*(x+x^(3/2))^(3/2)*x^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {2041, 2027, 2039} \begin {gather*} \frac {4}{11} \sqrt {x} \left (x^{3/2}+x\right )^{3/2}+\frac {64 \left (x^{3/2}+x\right )^{3/2}}{231 \sqrt {x}}-\frac {256 \left (x^{3/2}+x\right )^{3/2}}{1155 x}+\frac {512 \left (x^{3/2}+x\right )^{3/2}}{3465 x^{3/2}}-\frac {32}{99} \left (x^{3/2}+x\right )^{3/2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x*Sqrt[x + x^(3/2)],x]

[Out]

(-32*(x + x^(3/2))^(3/2))/99 + (512*(x + x^(3/2))^(3/2))/(3465*x^(3/2)) - (256*(x + x^(3/2))^(3/2))/(1155*x) +
 (64*(x + x^(3/2))^(3/2))/(231*Sqrt[x]) + (4*Sqrt[x]*(x + x^(3/2))^(3/2))/11

Rule 2027

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(a*x^j + b*x^n)^(p + 1)/(a*(j*p + 1)*x^(j -
1)), x] - Dist[b*((n*p + n - j + 1)/(a*(j*p + 1))), Int[x^(n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, j,
 n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && ILtQ[Simplify[(n*p + n - j + 1)/(n - j)], 0] && NeQ[j*p + 1, 0]

Rule 2039

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(-c^(j - 1))*(c*x)^(m - j
 + 1)*((a*x^j + b*x^n)^(p + 1)/(a*(n - j)*(p + 1))), x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] &&
 NeQ[n, j] && EqQ[m + n*p + n - j + 1, 0] && (IntegerQ[j] || GtQ[c, 0])

Rule 2041

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[c^(j - 1)*(c*x)^(m - j +
1)*((a*x^j + b*x^n)^(p + 1)/(a*(m + j*p + 1))), x] - Dist[b*((m + n*p + n - j + 1)/(a*c^(n - j)*(m + j*p + 1))
), Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[
n, j] && ILtQ[Simplify[(m + n*p + n - j + 1)/(n - j)], 0] && NeQ[m + j*p + 1, 0] && (IntegersQ[j, n] || GtQ[c,
 0])

Rubi steps

\begin {align*} \int x \sqrt {x+x^{3/2}} \, dx &=\frac {4}{11} \sqrt {x} \left (x+x^{3/2}\right )^{3/2}-\frac {8}{11} \int \sqrt {x} \sqrt {x+x^{3/2}} \, dx\\ &=-\frac {32}{99} \left (x+x^{3/2}\right )^{3/2}+\frac {4}{11} \sqrt {x} \left (x+x^{3/2}\right )^{3/2}+\frac {16}{33} \int \sqrt {x+x^{3/2}} \, dx\\ &=-\frac {32}{99} \left (x+x^{3/2}\right )^{3/2}+\frac {64 \left (x+x^{3/2}\right )^{3/2}}{231 \sqrt {x}}+\frac {4}{11} \sqrt {x} \left (x+x^{3/2}\right )^{3/2}-\frac {64}{231} \int \frac {\sqrt {x+x^{3/2}}}{\sqrt {x}} \, dx\\ &=-\frac {32}{99} \left (x+x^{3/2}\right )^{3/2}-\frac {256 \left (x+x^{3/2}\right )^{3/2}}{1155 x}+\frac {64 \left (x+x^{3/2}\right )^{3/2}}{231 \sqrt {x}}+\frac {4}{11} \sqrt {x} \left (x+x^{3/2}\right )^{3/2}+\frac {128 \int \frac {\sqrt {x+x^{3/2}}}{x} \, dx}{1155}\\ &=-\frac {32}{99} \left (x+x^{3/2}\right )^{3/2}+\frac {512 \left (x+x^{3/2}\right )^{3/2}}{3465 x^{3/2}}-\frac {256 \left (x+x^{3/2}\right )^{3/2}}{1155 x}+\frac {64 \left (x+x^{3/2}\right )^{3/2}}{231 \sqrt {x}}+\frac {4}{11} \sqrt {x} \left (x+x^{3/2}\right )^{3/2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 51, normalized size = 0.54 \begin {gather*} \frac {4 \sqrt {x+x^{3/2}} \left (128-64 \sqrt {x}+48 x-40 x^{3/2}+35 x^2+315 x^{5/2}\right )}{3465 \sqrt {x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x*Sqrt[x + x^(3/2)],x]

[Out]

(4*Sqrt[x + x^(3/2)]*(128 - 64*Sqrt[x] + 48*x - 40*x^(3/2) + 35*x^2 + 315*x^(5/2)))/(3465*Sqrt[x])

________________________________________________________________________________________

Maple [A]
time = 0.22, size = 38, normalized size = 0.40

method result size
derivativedivides \(\frac {4 \sqrt {x +x^{\frac {3}{2}}}\, \left (1+\sqrt {x}\right ) \left (315 x^{2}-280 x^{\frac {3}{2}}+240 x -192 \sqrt {x}+128\right )}{3465 \sqrt {x}}\) \(38\)
default \(\frac {4 \sqrt {x +x^{\frac {3}{2}}}\, \left (1+\sqrt {x}\right ) \left (315 x^{2}-280 x^{\frac {3}{2}}+240 x -192 \sqrt {x}+128\right )}{3465 \sqrt {x}}\) \(38\)
meijerg \(-\frac {\frac {512 \sqrt {\pi }}{3465}-\frac {4 \sqrt {\pi }\, \left (1+\sqrt {x}\right )^{\frac {3}{2}} \left (315 x^{2}-280 x^{\frac {3}{2}}+240 x -192 \sqrt {x}+128\right )}{3465}}{\sqrt {\pi }}\) \(44\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(x+x^(3/2))^(1/2),x,method=_RETURNVERBOSE)

[Out]

4/3465*(x+x^(3/2))^(1/2)*(1+x^(1/2))*(315*x^2-280*x^(3/2)+240*x-192*x^(1/2)+128)/x^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(x+x^(3/2))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x^(3/2) + x)*x, x)

________________________________________________________________________________________

Fricas [A]
time = 0.41, size = 40, normalized size = 0.43 \begin {gather*} \frac {4 \, {\left (315 \, x^{3} - 40 \, x^{2} + {\left (35 \, x^{2} + 48 \, x + 128\right )} \sqrt {x} - 64 \, x\right )} \sqrt {x^{\frac {3}{2}} + x}}{3465 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(x+x^(3/2))^(1/2),x, algorithm="fricas")

[Out]

4/3465*(315*x^3 - 40*x^2 + (35*x^2 + 48*x + 128)*sqrt(x) - 64*x)*sqrt(x^(3/2) + x)/x

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x \sqrt {x^{\frac {3}{2}} + x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(x+x**(3/2))**(1/2),x)

[Out]

Integral(x*sqrt(x**(3/2) + x), x)

________________________________________________________________________________________

Giac [A]
time = 6.00, size = 51, normalized size = 0.54 \begin {gather*} \frac {4}{3465} \, {\left (315 \, {\left (\sqrt {x} + 1\right )}^{\frac {11}{2}} - 1540 \, {\left (\sqrt {x} + 1\right )}^{\frac {9}{2}} + 2970 \, {\left (\sqrt {x} + 1\right )}^{\frac {7}{2}} - 2772 \, {\left (\sqrt {x} + 1\right )}^{\frac {5}{2}} + 1155 \, {\left (\sqrt {x} + 1\right )}^{\frac {3}{2}} - 128\right )} \mathrm {sgn}\left (x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(x+x^(3/2))^(1/2),x, algorithm="giac")

[Out]

4/3465*(315*(sqrt(x) + 1)^(11/2) - 1540*(sqrt(x) + 1)^(9/2) + 2970*(sqrt(x) + 1)^(7/2) - 2772*(sqrt(x) + 1)^(5
/2) + 1155*(sqrt(x) + 1)^(3/2) - 128)*sgn(x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x\,\sqrt {x+x^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(x + x^(3/2))^(1/2),x)

[Out]

int(x*(x + x^(3/2))^(1/2), x)

________________________________________________________________________________________