3.1.68 \(\int \frac {1+x^4}{(1-x^4) \sqrt {-1+x^2+x^4}} \, dx\) [68]

Optimal. Leaf size=15 \[ \tanh ^{-1}\left (\frac {x}{\sqrt {-1+x^2+x^4}}\right ) \]

[Out]

arctanh(x/(x^4+x^2-1)^(1/2))

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 15, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {2137, 212} \begin {gather*} \tanh ^{-1}\left (\frac {x}{\sqrt {x^4+x^2-1}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 + x^4)/((1 - x^4)*Sqrt[-1 + x^2 + x^4]),x]

[Out]

ArcTanh[x/Sqrt[-1 + x^2 + x^4]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2137

Int[((u_)*((A_) + (B_.)*(x_)^4))/Sqrt[v_], x_Symbol] :> With[{a = Coeff[v, x, 0], b = Coeff[v, x, 2], c = Coef
f[v, x, 4], d = Coeff[1/u, x, 0], e = Coeff[1/u, x, 2], f = Coeff[1/u, x, 4]}, Dist[A, Subst[Int[1/(d - (b*d -
 a*e)*x^2), x], x, x/Sqrt[v]], x] /; EqQ[a*B + A*c, 0] && EqQ[c*d - a*f, 0]] /; FreeQ[{A, B}, x] && PolyQ[v, x
^2, 2] && PolyQ[1/u, x^2, 2]

Rubi steps

\begin {align*} \int \frac {1+x^4}{\left (1-x^4\right ) \sqrt {-1+x^2+x^4}} \, dx &=\text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {x}{\sqrt {-1+x^2+x^4}}\right )\\ &=\tanh ^{-1}\left (\frac {x}{\sqrt {-1+x^2+x^4}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.17, size = 15, normalized size = 1.00 \begin {gather*} \tanh ^{-1}\left (\frac {x}{\sqrt {-1+x^2+x^4}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 + x^4)/((1 - x^4)*Sqrt[-1 + x^2 + x^4]),x]

[Out]

ArcTanh[x/Sqrt[-1 + x^2 + x^4]]

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 0.59, size = 265, normalized size = 17.67

method result size
elliptic \(\arctanh \left (\frac {\sqrt {x^{4}+x^{2}-1}}{x}\right )\) \(16\)
trager \(\frac {\ln \left (-\frac {x^{4}+2 \sqrt {x^{4}+x^{2}-1}\, x +2 x^{2}-1}{\left (-1+x \right ) \left (1+x \right ) \left (x^{2}+1\right )}\right )}{2}\) \(46\)
default \(-\frac {2 \sqrt {1-\left (\frac {1}{2}-\frac {\sqrt {5}}{2}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{2}+\frac {\sqrt {5}}{2}\right ) x^{2}}\, \EllipticF \left (\frac {x \sqrt {2-2 \sqrt {5}}}{2}, \frac {i}{2}+\frac {i \sqrt {5}}{2}\right )}{\sqrt {2-2 \sqrt {5}}\, \sqrt {x^{4}+x^{2}-1}}+\frac {\sqrt {1-\frac {x^{2}}{2}+\frac {\sqrt {5}\, x^{2}}{2}}\, \sqrt {1-\frac {x^{2}}{2}-\frac {\sqrt {5}\, x^{2}}{2}}\, \EllipticPi \left (\sqrt {\frac {1}{2}-\frac {\sqrt {5}}{2}}\, x , -\frac {1}{\frac {1}{2}-\frac {\sqrt {5}}{2}}, \frac {\sqrt {\frac {1}{2}+\frac {\sqrt {5}}{2}}}{\sqrt {\frac {1}{2}-\frac {\sqrt {5}}{2}}}\right )}{\sqrt {\frac {1}{2}-\frac {\sqrt {5}}{2}}\, \sqrt {x^{4}+x^{2}-1}}+\frac {\sqrt {1-\left (\frac {1}{2}-\frac {\sqrt {5}}{2}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{2}+\frac {\sqrt {5}}{2}\right ) x^{2}}\, \EllipticPi \left (\sqrt {\frac {1}{2}-\frac {\sqrt {5}}{2}}\, x , \frac {1}{\frac {1}{2}-\frac {\sqrt {5}}{2}}, \frac {\sqrt {\frac {1}{2}+\frac {\sqrt {5}}{2}}}{\sqrt {\frac {1}{2}-\frac {\sqrt {5}}{2}}}\right )}{\sqrt {\frac {1}{2}-\frac {\sqrt {5}}{2}}\, \sqrt {x^{4}+x^{2}-1}}\) \(265\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4+1)/(-x^4+1)/(x^4+x^2-1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/(2-2*5^(1/2))^(1/2)*(1-(1/2-1/2*5^(1/2))*x^2)^(1/2)*(1-(1/2+1/2*5^(1/2))*x^2)^(1/2)/(x^4+x^2-1)^(1/2)*Ellip
ticF(1/2*x*(2-2*5^(1/2))^(1/2),1/2*I+1/2*I*5^(1/2))+1/(1/2-1/2*5^(1/2))^(1/2)*(1-1/2*x^2+1/2*5^(1/2)*x^2)^(1/2
)*(1-1/2*x^2-1/2*5^(1/2)*x^2)^(1/2)/(x^4+x^2-1)^(1/2)*EllipticPi((1/2-1/2*5^(1/2))^(1/2)*x,-1/(1/2-1/2*5^(1/2)
),(1/2+1/2*5^(1/2))^(1/2)/(1/2-1/2*5^(1/2))^(1/2))+1/(1/2-1/2*5^(1/2))^(1/2)*(1-(1/2-1/2*5^(1/2))*x^2)^(1/2)*(
1-(1/2+1/2*5^(1/2))*x^2)^(1/2)/(x^4+x^2-1)^(1/2)*EllipticPi((1/2-1/2*5^(1/2))^(1/2)*x,1/(1/2-1/2*5^(1/2)),(1/2
+1/2*5^(1/2))^(1/2)/(1/2-1/2*5^(1/2))^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+1)/(-x^4+1)/(x^4+x^2-1)^(1/2),x, algorithm="maxima")

[Out]

-integrate((x^4 + 1)/(sqrt(x^4 + x^2 - 1)*(x^4 - 1)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 34 vs. \(2 (13) = 26\).
time = 0.37, size = 34, normalized size = 2.27 \begin {gather*} \frac {1}{2} \, \log \left (\frac {x^{4} + 2 \, x^{2} + 2 \, \sqrt {x^{4} + x^{2} - 1} x - 1}{x^{4} - 1}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+1)/(-x^4+1)/(x^4+x^2-1)^(1/2),x, algorithm="fricas")

[Out]

1/2*log((x^4 + 2*x^2 + 2*sqrt(x^4 + x^2 - 1)*x - 1)/(x^4 - 1))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {x^{4}}{x^{4} \sqrt {x^{4} + x^{2} - 1} - \sqrt {x^{4} + x^{2} - 1}}\, dx - \int \frac {1}{x^{4} \sqrt {x^{4} + x^{2} - 1} - \sqrt {x^{4} + x^{2} - 1}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**4+1)/(-x**4+1)/(x**4+x**2-1)**(1/2),x)

[Out]

-Integral(x**4/(x**4*sqrt(x**4 + x**2 - 1) - sqrt(x**4 + x**2 - 1)), x) - Integral(1/(x**4*sqrt(x**4 + x**2 -
1) - sqrt(x**4 + x**2 - 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+1)/(-x^4+1)/(x^4+x^2-1)^(1/2),x, algorithm="giac")

[Out]

integrate(-(x^4 + 1)/(sqrt(x^4 + x^2 - 1)*(x^4 - 1)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.07 \begin {gather*} \int -\frac {x^4+1}{\left (x^4-1\right )\,\sqrt {x^4+x^2-1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^4 + 1)/((x^4 - 1)*(x^2 + x^4 - 1)^(1/2)),x)

[Out]

int(-(x^4 + 1)/((x^4 - 1)*(x^2 + x^4 - 1)^(1/2)), x)

________________________________________________________________________________________