3.14.55 \(\int \frac {x+\sqrt {1+x^2}}{1+\sqrt {x+\sqrt {1+x^2}}} \, dx\) [1355]

Optimal. Leaf size=97 \[ -\frac {x}{2}+\frac {1}{3} (3+x) \sqrt {x+\sqrt {1+x^2}}+\sqrt {1+x^2} \left (-\frac {1}{2}+\frac {1}{3} \sqrt {x+\sqrt {1+x^2}}\right )+\frac {1}{2} \log \left (x+\sqrt {1+x^2}\right )-2 \log \left (1+\sqrt {x+\sqrt {1+x^2}}\right ) \]

[Out]

-1/2*x+1/3*(3+x)*(x+(x^2+1)^(1/2))^(1/2)+(x^2+1)^(1/2)*(-1/2+1/3*(x+(x^2+1)^(1/2))^(1/2))+1/2*ln(x+(x^2+1)^(1/
2))-2*ln(1+(x+(x^2+1)^(1/2))^(1/2))

________________________________________________________________________________________

Rubi [A]
time = 0.52, antiderivative size = 91, normalized size of antiderivative = 0.94, number of steps used = 41, number of rules used = 22, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.710, Rules used = {6874, 201, 221, 2142, 14, 2144, 459, 2147, 276, 272, 52, 65, 213, 2145, 473, 470, 335, 304, 209, 212, 477, 472} \begin {gather*} \frac {1}{3} \left (\sqrt {x^2+1}+x\right )^{3/2}+\sqrt {\sqrt {x^2+1}+x}-\frac {\sqrt {x^2+1}}{2}+\frac {1}{2} \tanh ^{-1}\left (\sqrt {x^2+1}\right )-2 \tanh ^{-1}\left (\sqrt {\sqrt {x^2+1}+x}\right )-\frac {x}{2}-\frac {\log (x)}{2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x + Sqrt[1 + x^2])/(1 + Sqrt[x + Sqrt[1 + x^2]]),x]

[Out]

-1/2*x - Sqrt[1 + x^2]/2 + Sqrt[x + Sqrt[1 + x^2]] + (x + Sqrt[1 + x^2])^(3/2)/3 + ArcTanh[Sqrt[1 + x^2]]/2 -
2*ArcTanh[Sqrt[x + Sqrt[1 + x^2]]] - Log[x]/2

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 201

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^p/(n*p + 1)), x] + Dist[a*n*(p/(n*p + 1)),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 276

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 459

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[ExpandI
ntegrand[(e*x)^m*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] &
& IGtQ[p, 0] && IGtQ[q, 0]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p + 1) + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 472

Int[(((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegr
and[(e*x)^m*((a + b*x^n)^p/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n
, 0] && IGtQ[p, 0] && (IntegerQ[m] || IGtQ[2*(m + 1), 0] ||  !RationalQ[m])

Rule 473

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^2, x_Symbol] :> Simp[c^2*(e*x)^(m
 + 1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*x^n)^p*Simp[b
*c^2*n*(p + 1) + c*(b*c - 2*a*d)*(m + 1) - a*(m + 1)*d^2*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && Ne
Q[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && GtQ[n, 0]

Rule 477

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{k = Deno
minator[m]}, Dist[k/e, Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/e^n))^p*(c + d*(x^(k*n)/e^n))^q, x], x, (e*
x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && FractionQ[m] && Intege
rQ[p]

Rule 2142

Int[((g_.) + (h_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_) + (c_.)*(x_)^2])^(n_))^(p_.), x_Symbol] :> Dist[1/(2*
e), Subst[Int[(g + h*x^n)^p*((d^2 + a*f^2 - 2*d*x + x^2)/(d - x)^2), x], x, d + e*x + f*Sqrt[a + c*x^2]], x] /
; FreeQ[{a, c, d, e, f, g, h, n}, x] && EqQ[e^2 - c*f^2, 0] && IntegerQ[p]

Rule 2144

Int[((g_.) + (h_.)*(x_))^(m_.)*((e_.)*(x_) + (f_.)*Sqrt[(a_.) + (c_.)*(x_)^2])^(n_.), x_Symbol] :> Dist[1/(2^(
m + 1)*e^(m + 1)), Subst[Int[x^(n - m - 2)*(a*f^2 + x^2)*((-a)*f^2*h + 2*e*g*x + h*x^2)^m, x], x, e*x + f*Sqrt
[a + c*x^2]], x] /; FreeQ[{a, c, e, f, g, h, n}, x] && EqQ[e^2 - c*f^2, 0] && IntegerQ[m]

Rule 2145

Int[(x_)^(p_.)*((g_) + (i_.)*(x_)^2)^(m_.)*((e_.)*(x_) + (f_.)*Sqrt[(a_) + (c_.)*(x_)^2])^(n_.), x_Symbol] :>
Dist[(1/(2^(2*m + p + 1)*e^(p + 1)*f^(2*m)))*(i/c)^m, Subst[Int[x^(n - 2*m - p - 2)*((-a)*f^2 + x^2)^p*(a*f^2
+ x^2)^(2*m + 1), x], x, e*x + f*Sqrt[a + c*x^2]], x] /; FreeQ[{a, c, e, f, g, i, n}, x] && EqQ[e^2 - c*f^2, 0
] && EqQ[c*g - a*i, 0] && IntegersQ[p, 2*m] && (IntegerQ[m] || GtQ[i/c, 0])

Rule 2147

Int[((g_) + (i_.)*(x_)^2)^(m_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_) + (c_.)*(x_)^2])^(n_.), x_Symbol] :> Dis
t[(1/(2^(2*m + 1)*e*f^(2*m)))*(i/c)^m, Subst[Int[x^n*((d^2 + a*f^2 - 2*d*x + x^2)^(2*m + 1)/(-d + x)^(2*(m + 1
))), x], x, d + e*x + f*Sqrt[a + c*x^2]], x] /; FreeQ[{a, c, d, e, f, g, i, n}, x] && EqQ[e^2 - c*f^2, 0] && E
qQ[c*g - a*i, 0] && IntegerQ[2*m] && (IntegerQ[m] || GtQ[i/c, 0])

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {align*} \int \frac {x+\sqrt {1+x^2}}{1+\sqrt {x+\sqrt {1+x^2}}} \, dx &=\int \left (\frac {x}{1+\sqrt {x+\sqrt {1+x^2}}}+\frac {\sqrt {1+x^2}}{1+\sqrt {x+\sqrt {1+x^2}}}\right ) \, dx\\ &=\int \frac {x}{1+\sqrt {x+\sqrt {1+x^2}}} \, dx+\int \frac {\sqrt {1+x^2}}{1+\sqrt {x+\sqrt {1+x^2}}} \, dx\\ &=\int \left (-\frac {1}{2}+\frac {x}{2}-\frac {\sqrt {1+x^2}}{2}+\frac {1}{2} \sqrt {x+\sqrt {1+x^2}}-\frac {1}{2} x \sqrt {x+\sqrt {1+x^2}}+\frac {1}{2} \sqrt {1+x^2} \sqrt {x+\sqrt {1+x^2}}\right ) \, dx+\int \left (\frac {\sqrt {1+x^2}}{2}-\frac {\sqrt {1+x^2}}{2 x}-\frac {1+x^2}{2 x}-\frac {1}{2} \sqrt {1+x^2} \sqrt {x+\sqrt {1+x^2}}+\frac {\sqrt {1+x^2} \sqrt {x+\sqrt {1+x^2}}}{2 x}+\frac {\left (1+x^2\right ) \sqrt {x+\sqrt {1+x^2}}}{2 x}\right ) \, dx\\ &=-\frac {x}{2}+\frac {x^2}{4}-\frac {1}{2} \int \frac {\sqrt {1+x^2}}{x} \, dx-\frac {1}{2} \int \frac {1+x^2}{x} \, dx+\frac {1}{2} \int \sqrt {x+\sqrt {1+x^2}} \, dx-\frac {1}{2} \int x \sqrt {x+\sqrt {1+x^2}} \, dx+\frac {1}{2} \int \frac {\sqrt {1+x^2} \sqrt {x+\sqrt {1+x^2}}}{x} \, dx+\frac {1}{2} \int \frac {\left (1+x^2\right ) \sqrt {x+\sqrt {1+x^2}}}{x} \, dx\\ &=-\frac {x}{2}+\frac {x^2}{4}-\frac {1}{8} \text {Subst}\left (\int \frac {\left (-1+x^2\right ) \left (1+x^2\right )}{x^{5/2}} \, dx,x,x+\sqrt {1+x^2}\right )+\frac {1}{8} \text {Subst}\left (\int \frac {\left (1+x^2\right )^3}{x^{5/2} \left (-1+x^2\right )} \, dx,x,x+\sqrt {1+x^2}\right )-\frac {1}{4} \text {Subst}\left (\int \frac {\sqrt {1+x}}{x} \, dx,x,x^2\right )+\frac {1}{4} \text {Subst}\left (\int \frac {1+x^2}{x^{3/2}} \, dx,x,x+\sqrt {1+x^2}\right )+\frac {1}{4} \text {Subst}\left (\int \frac {\left (1+x^2\right )^2}{x^{3/2} \left (-1+x^2\right )} \, dx,x,x+\sqrt {1+x^2}\right )-\frac {1}{2} \int \left (\frac {1}{x}+x\right ) \, dx\\ &=-\frac {x}{2}-\frac {\sqrt {1+x^2}}{2}+\frac {1}{2 \sqrt {x+\sqrt {1+x^2}}}-\frac {\log (x)}{2}-\frac {1}{8} \text {Subst}\left (\int \left (-\frac {1}{x^{5/2}}+x^{3/2}\right ) \, dx,x,x+\sqrt {1+x^2}\right )+\frac {1}{4} \text {Subst}\left (\int \left (\frac {1}{x^{3/2}}+\sqrt {x}\right ) \, dx,x,x+\sqrt {1+x^2}\right )-\frac {1}{4} \text {Subst}\left (\int \frac {1}{x \sqrt {1+x}} \, dx,x,x^2\right )+\frac {1}{4} \text {Subst}\left (\int \frac {\left (1+x^4\right )^3}{x^4 \left (-1+x^4\right )} \, dx,x,\sqrt {x+\sqrt {1+x^2}}\right )-\frac {1}{2} \text {Subst}\left (\int \frac {\sqrt {x} \left (-\frac {3}{2}-\frac {x^2}{2}\right )}{-1+x^2} \, dx,x,x+\sqrt {1+x^2}\right )\\ &=-\frac {x}{2}-\frac {\sqrt {1+x^2}}{2}-\frac {1}{12 \left (x+\sqrt {1+x^2}\right )^{3/2}}+\frac {1}{3} \left (x+\sqrt {1+x^2}\right )^{3/2}-\frac {1}{20} \left (x+\sqrt {1+x^2}\right )^{5/2}-\frac {\log (x)}{2}+\frac {1}{4} \text {Subst}\left (\int \left (4-\frac {1}{x^4}+x^4+\frac {4}{-1+x^2}-\frac {4}{1+x^2}\right ) \, dx,x,\sqrt {x+\sqrt {1+x^2}}\right )-\frac {1}{2} \text {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,\sqrt {1+x^2}\right )+\text {Subst}\left (\int \frac {\sqrt {x}}{-1+x^2} \, dx,x,x+\sqrt {1+x^2}\right )\\ &=-\frac {x}{2}-\frac {\sqrt {1+x^2}}{2}+\sqrt {x+\sqrt {1+x^2}}+\frac {1}{3} \left (x+\sqrt {1+x^2}\right )^{3/2}+\frac {1}{2} \tanh ^{-1}\left (\sqrt {1+x^2}\right )-\frac {\log (x)}{2}+2 \text {Subst}\left (\int \frac {x^2}{-1+x^4} \, dx,x,\sqrt {x+\sqrt {1+x^2}}\right )+\text {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,\sqrt {x+\sqrt {1+x^2}}\right )-\text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt {x+\sqrt {1+x^2}}\right )\\ &=-\frac {x}{2}-\frac {\sqrt {1+x^2}}{2}+\sqrt {x+\sqrt {1+x^2}}+\frac {1}{3} \left (x+\sqrt {1+x^2}\right )^{3/2}-\tan ^{-1}\left (\sqrt {x+\sqrt {1+x^2}}\right )+\frac {1}{2} \tanh ^{-1}\left (\sqrt {1+x^2}\right )-\tanh ^{-1}\left (\sqrt {x+\sqrt {1+x^2}}\right )-\frac {\log (x)}{2}-\text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\sqrt {x+\sqrt {1+x^2}}\right )+\text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt {x+\sqrt {1+x^2}}\right )\\ &=-\frac {x}{2}-\frac {\sqrt {1+x^2}}{2}+\sqrt {x+\sqrt {1+x^2}}+\frac {1}{3} \left (x+\sqrt {1+x^2}\right )^{3/2}+\frac {1}{2} \tanh ^{-1}\left (\sqrt {1+x^2}\right )-2 \tanh ^{-1}\left (\sqrt {x+\sqrt {1+x^2}}\right )-\frac {\log (x)}{2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.10, size = 91, normalized size = 0.94 \begin {gather*} \frac {1}{6} \left (-3 x+2 (3+x) \sqrt {x+\sqrt {1+x^2}}+\sqrt {1+x^2} \left (-3+2 \sqrt {x+\sqrt {1+x^2}}\right )+3 \log \left (x+\sqrt {1+x^2}\right )-12 \log \left (1+\sqrt {x+\sqrt {1+x^2}}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x + Sqrt[1 + x^2])/(1 + Sqrt[x + Sqrt[1 + x^2]]),x]

[Out]

(-3*x + 2*(3 + x)*Sqrt[x + Sqrt[1 + x^2]] + Sqrt[1 + x^2]*(-3 + 2*Sqrt[x + Sqrt[1 + x^2]]) + 3*Log[x + Sqrt[1
+ x^2]] - 12*Log[1 + Sqrt[x + Sqrt[1 + x^2]]])/6

________________________________________________________________________________________

Maple [F]
time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {x +\sqrt {x^{2}+1}}{1+\sqrt {x +\sqrt {x^{2}+1}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x+(x^2+1)^(1/2))/(1+(x+(x^2+1)^(1/2))^(1/2)),x)

[Out]

int((x+(x^2+1)^(1/2))/(1+(x+(x^2+1)^(1/2))^(1/2)),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x+(x^2+1)^(1/2))/(1+(x+(x^2+1)^(1/2))^(1/2)),x, algorithm="maxima")

[Out]

1/4*x^2 + 1/2*integrate(sqrt(x^2 + 1), x) - integrate(1/2*(2*x^2 + sqrt(x^2 + 1)*(2*x - 1) - x + 1)/(x + sqrt(
x^2 + 1) + 2*sqrt(x + sqrt(x^2 + 1)) + 1), x)

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 64, normalized size = 0.66 \begin {gather*} \frac {1}{3} \, {\left (x + \sqrt {x^{2} + 1} + 3\right )} \sqrt {x + \sqrt {x^{2} + 1}} - \frac {1}{2} \, x - \frac {1}{2} \, \sqrt {x^{2} + 1} - 2 \, \log \left (\sqrt {x + \sqrt {x^{2} + 1}} + 1\right ) + \log \left (\sqrt {x + \sqrt {x^{2} + 1}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x+(x^2+1)^(1/2))/(1+(x+(x^2+1)^(1/2))^(1/2)),x, algorithm="fricas")

[Out]

1/3*(x + sqrt(x^2 + 1) + 3)*sqrt(x + sqrt(x^2 + 1)) - 1/2*x - 1/2*sqrt(x^2 + 1) - 2*log(sqrt(x + sqrt(x^2 + 1)
) + 1) + log(sqrt(x + sqrt(x^2 + 1)))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x + \sqrt {x^{2} + 1}}{\sqrt {x + \sqrt {x^{2} + 1}} + 1}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x+(x**2+1)**(1/2))/(1+(x+(x**2+1)**(1/2))**(1/2)),x)

[Out]

Integral((x + sqrt(x**2 + 1))/(sqrt(x + sqrt(x**2 + 1)) + 1), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x+(x^2+1)^(1/2))/(1+(x+(x^2+1)^(1/2))^(1/2)),x, algorithm="giac")

[Out]

integrate((x + sqrt(x^2 + 1))/(sqrt(x + sqrt(x^2 + 1)) + 1), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x+\sqrt {x^2+1}}{\sqrt {x+\sqrt {x^2+1}}+1} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x + (x^2 + 1)^(1/2))/((x + (x^2 + 1)^(1/2))^(1/2) + 1),x)

[Out]

int((x + (x^2 + 1)^(1/2))/((x + (x^2 + 1)^(1/2))^(1/2) + 1), x)

________________________________________________________________________________________