3.17.15 \(\int \frac {b-a x^3+x^6}{x^6 \sqrt [4]{b x+a x^4}} \, dx\) [1615]

Optimal. Leaf size=110 \[ \frac {4 \left (-3 b+11 a x^3\right ) \left (b x+a x^4\right )^{3/4}}{63 b x^6}+\frac {2 \text {ArcTan}\left (\frac {\sqrt [4]{a} \left (b x+a x^4\right )^{3/4}}{b+a x^3}\right )}{3 \sqrt [4]{a}}+\frac {2 \tanh ^{-1}\left (\frac {\sqrt [4]{a} \left (b x+a x^4\right )^{3/4}}{b+a x^3}\right )}{3 \sqrt [4]{a}} \]

[Out]

4/63*(11*a*x^3-3*b)*(a*x^4+b*x)^(3/4)/b/x^6+2/3*arctan(a^(1/4)*(a*x^4+b*x)^(3/4)/(a*x^3+b))/a^(1/4)+2/3*arctan
h(a^(1/4)*(a*x^4+b*x)^(3/4)/(a*x^3+b))/a^(1/4)

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 167, normalized size of antiderivative = 1.52, number of steps used = 12, number of rules used = 10, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.357, Rules used = {2077, 2036, 335, 281, 246, 218, 212, 209, 2041, 2039} \begin {gather*} \frac {2 \sqrt [4]{x} \sqrt [4]{a x^3+b} \text {ArcTan}\left (\frac {\sqrt [4]{a} x^{3/4}}{\sqrt [4]{a x^3+b}}\right )}{3 \sqrt [4]{a} \sqrt [4]{a x^4+b x}}-\frac {4 \left (a x^4+b x\right )^{3/4}}{21 x^6}+\frac {44 a \left (a x^4+b x\right )^{3/4}}{63 b x^3}+\frac {2 \sqrt [4]{x} \sqrt [4]{a x^3+b} \tanh ^{-1}\left (\frac {\sqrt [4]{a} x^{3/4}}{\sqrt [4]{a x^3+b}}\right )}{3 \sqrt [4]{a} \sqrt [4]{a x^4+b x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(b - a*x^3 + x^6)/(x^6*(b*x + a*x^4)^(1/4)),x]

[Out]

(-4*(b*x + a*x^4)^(3/4))/(21*x^6) + (44*a*(b*x + a*x^4)^(3/4))/(63*b*x^3) + (2*x^(1/4)*(b + a*x^3)^(1/4)*ArcTa
n[(a^(1/4)*x^(3/4))/(b + a*x^3)^(1/4)])/(3*a^(1/4)*(b*x + a*x^4)^(1/4)) + (2*x^(1/4)*(b + a*x^3)^(1/4)*ArcTanh
[(a^(1/4)*x^(3/4))/(b + a*x^3)^(1/4)])/(3*a^(1/4)*(b*x + a*x^4)^(1/4))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 246

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + 1/n), Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x], x
, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p
 + 1/n]

Rule 281

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2036

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(a*x^j + b*x^n)^FracPart[p]/(x^(j*FracPart[p
])*(a + b*x^(n - j))^FracPart[p]), Int[x^(j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, j, n, p}, x] &&  !I
ntegerQ[p] && NeQ[n, j] && PosQ[n - j]

Rule 2039

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(-c^(j - 1))*(c*x)^(m - j
 + 1)*((a*x^j + b*x^n)^(p + 1)/(a*(n - j)*(p + 1))), x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] &&
 NeQ[n, j] && EqQ[m + n*p + n - j + 1, 0] && (IntegerQ[j] || GtQ[c, 0])

Rule 2041

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[c^(j - 1)*(c*x)^(m - j +
1)*((a*x^j + b*x^n)^(p + 1)/(a*(m + j*p + 1))), x] - Dist[b*((m + n*p + n - j + 1)/(a*c^(n - j)*(m + j*p + 1))
), Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[
n, j] && ILtQ[Simplify[(m + n*p + n - j + 1)/(n - j)], 0] && NeQ[m + j*p + 1, 0] && (IntegersQ[j, n] || GtQ[c,
 0])

Rule 2077

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(c*x)
^m*Pq*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] && (PolyQ[Pq, x] || PolyQ[Pq, x^n]) &&  !In
tegerQ[p] && NeQ[n, j]

Rubi steps

\begin {align*} \int \frac {b-a x^3+x^6}{x^6 \sqrt [4]{b x+a x^4}} \, dx &=\int \left (\frac {1}{\sqrt [4]{b x+a x^4}}+\frac {b}{x^6 \sqrt [4]{b x+a x^4}}-\frac {a}{x^3 \sqrt [4]{b x+a x^4}}\right ) \, dx\\ &=-\left (a \int \frac {1}{x^3 \sqrt [4]{b x+a x^4}} \, dx\right )+b \int \frac {1}{x^6 \sqrt [4]{b x+a x^4}} \, dx+\int \frac {1}{\sqrt [4]{b x+a x^4}} \, dx\\ &=-\frac {4 \left (b x+a x^4\right )^{3/4}}{21 x^6}+\frac {4 a \left (b x+a x^4\right )^{3/4}}{9 b x^3}-\frac {1}{7} (4 a) \int \frac {1}{x^3 \sqrt [4]{b x+a x^4}} \, dx+\frac {\left (\sqrt [4]{x} \sqrt [4]{b+a x^3}\right ) \int \frac {1}{\sqrt [4]{x} \sqrt [4]{b+a x^3}} \, dx}{\sqrt [4]{b x+a x^4}}\\ &=-\frac {4 \left (b x+a x^4\right )^{3/4}}{21 x^6}+\frac {44 a \left (b x+a x^4\right )^{3/4}}{63 b x^3}+\frac {\left (4 \sqrt [4]{x} \sqrt [4]{b+a x^3}\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt [4]{b+a x^{12}}} \, dx,x,\sqrt [4]{x}\right )}{\sqrt [4]{b x+a x^4}}\\ &=-\frac {4 \left (b x+a x^4\right )^{3/4}}{21 x^6}+\frac {44 a \left (b x+a x^4\right )^{3/4}}{63 b x^3}+\frac {\left (4 \sqrt [4]{x} \sqrt [4]{b+a x^3}\right ) \text {Subst}\left (\int \frac {1}{\sqrt [4]{b+a x^4}} \, dx,x,x^{3/4}\right )}{3 \sqrt [4]{b x+a x^4}}\\ &=-\frac {4 \left (b x+a x^4\right )^{3/4}}{21 x^6}+\frac {44 a \left (b x+a x^4\right )^{3/4}}{63 b x^3}+\frac {\left (4 \sqrt [4]{x} \sqrt [4]{b+a x^3}\right ) \text {Subst}\left (\int \frac {1}{1-a x^4} \, dx,x,\frac {x^{3/4}}{\sqrt [4]{b+a x^3}}\right )}{3 \sqrt [4]{b x+a x^4}}\\ &=-\frac {4 \left (b x+a x^4\right )^{3/4}}{21 x^6}+\frac {44 a \left (b x+a x^4\right )^{3/4}}{63 b x^3}+\frac {\left (2 \sqrt [4]{x} \sqrt [4]{b+a x^3}\right ) \text {Subst}\left (\int \frac {1}{1-\sqrt {a} x^2} \, dx,x,\frac {x^{3/4}}{\sqrt [4]{b+a x^3}}\right )}{3 \sqrt [4]{b x+a x^4}}+\frac {\left (2 \sqrt [4]{x} \sqrt [4]{b+a x^3}\right ) \text {Subst}\left (\int \frac {1}{1+\sqrt {a} x^2} \, dx,x,\frac {x^{3/4}}{\sqrt [4]{b+a x^3}}\right )}{3 \sqrt [4]{b x+a x^4}}\\ &=-\frac {4 \left (b x+a x^4\right )^{3/4}}{21 x^6}+\frac {44 a \left (b x+a x^4\right )^{3/4}}{63 b x^3}+\frac {2 \sqrt [4]{x} \sqrt [4]{b+a x^3} \tan ^{-1}\left (\frac {\sqrt [4]{a} x^{3/4}}{\sqrt [4]{b+a x^3}}\right )}{3 \sqrt [4]{a} \sqrt [4]{b x+a x^4}}+\frac {2 \sqrt [4]{x} \sqrt [4]{b+a x^3} \tanh ^{-1}\left (\frac {\sqrt [4]{a} x^{3/4}}{\sqrt [4]{b+a x^3}}\right )}{3 \sqrt [4]{a} \sqrt [4]{b x+a x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 10.04, size = 83, normalized size = 0.75 \begin {gather*} \frac {4 \left (-3 b^2+8 a b x^3+11 a^2 x^6+21 b x^6 \sqrt [4]{1+\frac {a x^3}{b}} \, _2F_1\left (\frac {1}{4},\frac {1}{4};\frac {5}{4};-\frac {a x^3}{b}\right )\right )}{63 b x^5 \sqrt [4]{x \left (b+a x^3\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(b - a*x^3 + x^6)/(x^6*(b*x + a*x^4)^(1/4)),x]

[Out]

(4*(-3*b^2 + 8*a*b*x^3 + 11*a^2*x^6 + 21*b*x^6*(1 + (a*x^3)/b)^(1/4)*Hypergeometric2F1[1/4, 1/4, 5/4, -((a*x^3
)/b)]))/(63*b*x^5*(x*(b + a*x^3))^(1/4))

________________________________________________________________________________________

Maple [F]
time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {x^{6}-a \,x^{3}+b}{x^{6} \left (a \,x^{4}+b x \right )^{\frac {1}{4}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^6-a*x^3+b)/x^6/(a*x^4+b*x)^(1/4),x)

[Out]

int((x^6-a*x^3+b)/x^6/(a*x^4+b*x)^(1/4),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^6-a*x^3+b)/x^6/(a*x^4+b*x)^(1/4),x, algorithm="maxima")

[Out]

integrate((x^6 - a*x^3 + b)/((a*x^4 + b*x)^(1/4)*x^6), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^6-a*x^3+b)/x^6/(a*x^4+b*x)^(1/4),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {- a x^{3} + b + x^{6}}{x^{6} \sqrt [4]{x \left (a x^{3} + b\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**6-a*x**3+b)/x**6/(a*x**4+b*x)**(1/4),x)

[Out]

Integral((-a*x**3 + b + x**6)/(x**6*(x*(a*x**3 + b))**(1/4)), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 212 vs. \(2 (90) = 180\).
time = 0.42, size = 212, normalized size = 1.93 \begin {gather*} -\frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (-a\right )^{\frac {1}{4}} + 2 \, {\left (a + \frac {b}{x^{3}}\right )}^{\frac {1}{4}}\right )}}{2 \, \left (-a\right )^{\frac {1}{4}}}\right )}{3 \, \left (-a\right )^{\frac {1}{4}}} - \frac {\sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (-a\right )^{\frac {1}{4}} - 2 \, {\left (a + \frac {b}{x^{3}}\right )}^{\frac {1}{4}}\right )}}{2 \, \left (-a\right )^{\frac {1}{4}}}\right )}{3 \, \left (-a\right )^{\frac {1}{4}}} + \frac {\sqrt {2} \log \left (\sqrt {2} \left (-a\right )^{\frac {1}{4}} {\left (a + \frac {b}{x^{3}}\right )}^{\frac {1}{4}} + \sqrt {-a} + \sqrt {a + \frac {b}{x^{3}}}\right )}{6 \, \left (-a\right )^{\frac {1}{4}}} + \frac {\sqrt {2} \left (-a\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \left (-a\right )^{\frac {1}{4}} {\left (a + \frac {b}{x^{3}}\right )}^{\frac {1}{4}} + \sqrt {-a} + \sqrt {a + \frac {b}{x^{3}}}\right )}{6 \, a} - \frac {4 \, {\left (3 \, {\left (a + \frac {b}{x^{3}}\right )}^{\frac {7}{4}} b^{6} - 14 \, {\left (a + \frac {b}{x^{3}}\right )}^{\frac {3}{4}} a b^{6}\right )}}{63 \, b^{7}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^6-a*x^3+b)/x^6/(a*x^4+b*x)^(1/4),x, algorithm="giac")

[Out]

-1/3*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*(-a)^(1/4) + 2*(a + b/x^3)^(1/4))/(-a)^(1/4))/(-a)^(1/4) - 1/3*sqrt(2
)*arctan(-1/2*sqrt(2)*(sqrt(2)*(-a)^(1/4) - 2*(a + b/x^3)^(1/4))/(-a)^(1/4))/(-a)^(1/4) + 1/6*sqrt(2)*log(sqrt
(2)*(-a)^(1/4)*(a + b/x^3)^(1/4) + sqrt(-a) + sqrt(a + b/x^3))/(-a)^(1/4) + 1/6*sqrt(2)*(-a)^(3/4)*log(-sqrt(2
)*(-a)^(1/4)*(a + b/x^3)^(1/4) + sqrt(-a) + sqrt(a + b/x^3))/a - 4/63*(3*(a + b/x^3)^(7/4)*b^6 - 14*(a + b/x^3
)^(3/4)*a*b^6)/b^7

________________________________________________________________________________________

Mupad [B]
time = 1.20, size = 77, normalized size = 0.70 \begin {gather*} \frac {4\,x\,{\left (\frac {a\,x^3}{b}+1\right )}^{1/4}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{4},\frac {1}{4};\ \frac {5}{4};\ -\frac {a\,x^3}{b}\right )}{3\,{\left (a\,x^4+b\,x\right )}^{1/4}}-\frac {4\,{\left (a\,x^4+b\,x\right )}^{3/4}}{21\,x^6}+\frac {44\,a\,{\left (a\,x^4+b\,x\right )}^{3/4}}{63\,b\,x^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b - a*x^3 + x^6)/(x^6*(b*x + a*x^4)^(1/4)),x)

[Out]

(4*x*((a*x^3)/b + 1)^(1/4)*hypergeom([1/4, 1/4], 5/4, -(a*x^3)/b))/(3*(b*x + a*x^4)^(1/4)) - (4*(b*x + a*x^4)^
(3/4))/(21*x^6) + (44*a*(b*x + a*x^4)^(3/4))/(63*b*x^3)

________________________________________________________________________________________