3.17.23 \(\int \frac {-b+a x^8}{\sqrt [4]{b+a x^4} (b+a x^8)} \, dx\) [1623]

Optimal. Leaf size=110 \[ \frac {\text {ArcTan}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{2 \sqrt [4]{a}}+\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{2 \sqrt [4]{a}}+\frac {1}{4} \text {RootSum}\left [a^2+a b-2 a \text {$\#$1}^4+\text {$\#$1}^8\& ,\frac {-\log (x)+\log \left (\sqrt [4]{b+a x^4}-x \text {$\#$1}\right )}{\text {$\#$1}}\& \right ] \]

[Out]

Unintegrable

________________________________________________________________________________________

Rubi [B] Leaf count is larger than twice the leaf count of optimal. \(285\) vs. \(2(110)=220\).
time = 0.26, antiderivative size = 285, normalized size of antiderivative = 2.59, number of steps used = 15, number of rules used = 7, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.233, Rules used = {6857, 246, 218, 212, 209, 1443, 385} \begin {gather*} \frac {\text {ArcTan}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}-\frac {\text {ArcTan}\left (\frac {x \sqrt [4]{a-\sqrt {-a} \sqrt {b}}}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a-\sqrt {-a} \sqrt {b}}}-\frac {\text {ArcTan}\left (\frac {x \sqrt [4]{\sqrt {-a} \sqrt {b}+a}}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{\sqrt {-a} \sqrt {b}+a}}+\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}-\frac {\tanh ^{-1}\left (\frac {x \sqrt [4]{a-\sqrt {-a} \sqrt {b}}}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a-\sqrt {-a} \sqrt {b}}}-\frac {\tanh ^{-1}\left (\frac {x \sqrt [4]{\sqrt {-a} \sqrt {b}+a}}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{\sqrt {-a} \sqrt {b}+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-b + a*x^8)/((b + a*x^4)^(1/4)*(b + a*x^8)),x]

[Out]

ArcTan[(a^(1/4)*x)/(b + a*x^4)^(1/4)]/(2*a^(1/4)) - ArcTan[((a - Sqrt[-a]*Sqrt[b])^(1/4)*x)/(b + a*x^4)^(1/4)]
/(2*(a - Sqrt[-a]*Sqrt[b])^(1/4)) - ArcTan[((a + Sqrt[-a]*Sqrt[b])^(1/4)*x)/(b + a*x^4)^(1/4)]/(2*(a + Sqrt[-a
]*Sqrt[b])^(1/4)) + ArcTanh[(a^(1/4)*x)/(b + a*x^4)^(1/4)]/(2*a^(1/4)) - ArcTanh[((a - Sqrt[-a]*Sqrt[b])^(1/4)
*x)/(b + a*x^4)^(1/4)]/(2*(a - Sqrt[-a]*Sqrt[b])^(1/4)) - ArcTanh[((a + Sqrt[-a]*Sqrt[b])^(1/4)*x)/(b + a*x^4)
^(1/4)]/(2*(a + Sqrt[-a]*Sqrt[b])^(1/4))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 246

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + 1/n), Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x], x
, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p
 + 1/n]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 1443

Int[((d_) + (e_.)*(x_)^(n_))^(q_)/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{r = Rt[(-a)*c, 2]}, Dist[-c/(2
*r), Int[(d + e*x^n)^q/(r - c*x^n), x], x] - Dist[c/(2*r), Int[(d + e*x^n)^q/(r + c*x^n), x], x]] /; FreeQ[{a,
 c, d, e, n, q}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[q]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {-b+a x^8}{\sqrt [4]{b+a x^4} \left (b+a x^8\right )} \, dx &=\int \left (\frac {1}{\sqrt [4]{b+a x^4}}-\frac {2 b}{\sqrt [4]{b+a x^4} \left (b+a x^8\right )}\right ) \, dx\\ &=-\left ((2 b) \int \frac {1}{\sqrt [4]{b+a x^4} \left (b+a x^8\right )} \, dx\right )+\int \frac {1}{\sqrt [4]{b+a x^4}} \, dx\\ &=-\left (\left (\sqrt {-a} \sqrt {b}\right ) \int \frac {1}{\left (\sqrt {-a} \sqrt {b}-a x^4\right ) \sqrt [4]{b+a x^4}} \, dx\right )-\left (\sqrt {-a} \sqrt {b}\right ) \int \frac {1}{\left (\sqrt {-a} \sqrt {b}+a x^4\right ) \sqrt [4]{b+a x^4}} \, dx+\text {Subst}\left (\int \frac {1}{1-a x^4} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )\\ &=\frac {1}{2} \text {Subst}\left (\int \frac {1}{1-\sqrt {a} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )+\frac {1}{2} \text {Subst}\left (\int \frac {1}{1+\sqrt {a} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )-\left (\sqrt {-a} \sqrt {b}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a} \sqrt {b}-\left (\sqrt {-a} a \sqrt {b}-a b\right ) x^4} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )-\left (\sqrt {-a} \sqrt {b}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a} \sqrt {b}-\left (\sqrt {-a} a \sqrt {b}+a b\right ) x^4} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{2 \sqrt [4]{a}}+\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{2 \sqrt [4]{a}}-\frac {1}{2} \text {Subst}\left (\int \frac {1}{1-\sqrt {a-\sqrt {-a} \sqrt {b}} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )-\frac {1}{2} \text {Subst}\left (\int \frac {1}{1+\sqrt {a-\sqrt {-a} \sqrt {b}} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )-\frac {1}{2} \text {Subst}\left (\int \frac {1}{1-\sqrt {a+\sqrt {-a} \sqrt {b}} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )-\frac {1}{2} \text {Subst}\left (\int \frac {1}{1+\sqrt {a+\sqrt {-a} \sqrt {b}} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{2 \sqrt [4]{a}}-\frac {\tan ^{-1}\left (\frac {\sqrt [4]{a-\sqrt {-a} \sqrt {b}} x}{\sqrt [4]{b+a x^4}}\right )}{2 \sqrt [4]{a-\sqrt {-a} \sqrt {b}}}-\frac {\tan ^{-1}\left (\frac {\sqrt [4]{a+\sqrt {-a} \sqrt {b}} x}{\sqrt [4]{b+a x^4}}\right )}{2 \sqrt [4]{a+\sqrt {-a} \sqrt {b}}}+\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{2 \sqrt [4]{a}}-\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{a-\sqrt {-a} \sqrt {b}} x}{\sqrt [4]{b+a x^4}}\right )}{2 \sqrt [4]{a-\sqrt {-a} \sqrt {b}}}-\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{a+\sqrt {-a} \sqrt {b}} x}{\sqrt [4]{b+a x^4}}\right )}{2 \sqrt [4]{a+\sqrt {-a} \sqrt {b}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.00, size = 100, normalized size = 0.91 \begin {gather*} \frac {1}{4} \left (\frac {2 \left (\text {ArcTan}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )+\tanh ^{-1}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )\right )}{\sqrt [4]{a}}+\text {RootSum}\left [a^2+a b-2 a \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-\log (x)+\log \left (\sqrt [4]{b+a x^4}-x \text {$\#$1}\right )}{\text {$\#$1}}\&\right ]\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-b + a*x^8)/((b + a*x^4)^(1/4)*(b + a*x^8)),x]

[Out]

((2*(ArcTan[(a^(1/4)*x)/(b + a*x^4)^(1/4)] + ArcTanh[(a^(1/4)*x)/(b + a*x^4)^(1/4)]))/a^(1/4) + RootSum[a^2 +
a*b - 2*a*#1^4 + #1^8 & , (-Log[x] + Log[(b + a*x^4)^(1/4) - x*#1])/#1 & ])/4

________________________________________________________________________________________

Maple [F]
time = 0.00, size = 0, normalized size = 0.00 \[\int \frac {a \,x^{8}-b}{\left (a \,x^{4}+b \right )^{\frac {1}{4}} \left (a \,x^{8}+b \right )}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x^8-b)/(a*x^4+b)^(1/4)/(a*x^8+b),x)

[Out]

int((a*x^8-b)/(a*x^4+b)^(1/4)/(a*x^8+b),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^8-b)/(a*x^4+b)^(1/4)/(a*x^8+b),x, algorithm="maxima")

[Out]

integrate((a*x^8 - b)/((a*x^8 + b)*(a*x^4 + b)^(1/4)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 3 vs. order 1.
time = 0.53, size = 1032, normalized size = 9.38 \begin {gather*} -\left (\frac {{\left (a + b\right )} \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} + 1}{a + b}\right )^{\frac {1}{4}} \arctan \left (\frac {{\left (x \sqrt {-\frac {{\left ({\left (a^{2} + a b\right )} x^{2} \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} - a x^{2}\right )} \sqrt {\frac {{\left (a + b\right )} \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} + 1}{a + b}} - \sqrt {a x^{4} + b}}{x^{2}}} - {\left (a x^{4} + b\right )}^{\frac {1}{4}}\right )} \left (\frac {{\left (a + b\right )} \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} + 1}{a + b}\right )^{\frac {1}{4}}}{x}\right ) - \left (-\frac {{\left (a + b\right )} \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} - 1}{a + b}\right )^{\frac {1}{4}} \arctan \left (\frac {x \left (-\frac {{\left (a + b\right )} \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} - 1}{a + b}\right )^{\frac {1}{4}} \sqrt {\frac {{\left ({\left (a^{2} + a b\right )} x^{2} \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} + a x^{2}\right )} \sqrt {-\frac {{\left (a + b\right )} \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} - 1}{a + b}} + \sqrt {a x^{4} + b}}{x^{2}}} - {\left (a x^{4} + b\right )}^{\frac {1}{4}} \left (-\frac {{\left (a + b\right )} \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} - 1}{a + b}\right )^{\frac {1}{4}}}{x}\right ) + \frac {1}{4} \, \left (\frac {{\left (a + b\right )} \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} + 1}{a + b}\right )^{\frac {1}{4}} \log \left (\frac {{\left ({\left (a^{2} + a b\right )} x \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} - a x\right )} \left (\frac {{\left (a + b\right )} \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} + 1}{a + b}\right )^{\frac {3}{4}} + {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{4} \, \left (\frac {{\left (a + b\right )} \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} + 1}{a + b}\right )^{\frac {1}{4}} \log \left (-\frac {{\left ({\left (a^{2} + a b\right )} x \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} - a x\right )} \left (\frac {{\left (a + b\right )} \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} + 1}{a + b}\right )^{\frac {3}{4}} - {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{4} \, \left (-\frac {{\left (a + b\right )} \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} - 1}{a + b}\right )^{\frac {1}{4}} \log \left (\frac {{\left ({\left (a^{2} + a b\right )} x \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} + a x\right )} \left (-\frac {{\left (a + b\right )} \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} - 1}{a + b}\right )^{\frac {3}{4}} + {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{4} \, \left (-\frac {{\left (a + b\right )} \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} - 1}{a + b}\right )^{\frac {1}{4}} \log \left (-\frac {{\left ({\left (a^{2} + a b\right )} x \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} + a x\right )} \left (-\frac {{\left (a + b\right )} \sqrt {-\frac {b}{a^{3} + 2 \, a^{2} b + a b^{2}}} - 1}{a + b}\right )^{\frac {3}{4}} - {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{x}\right ) + \frac {\arctan \left (\frac {\frac {x \sqrt {\frac {\sqrt {a} x^{2} + \sqrt {a x^{4} + b}}{x^{2}}}}{a^{\frac {1}{4}}} - \frac {{\left (a x^{4} + b\right )}^{\frac {1}{4}}}{a^{\frac {1}{4}}}}{x}\right )}{a^{\frac {1}{4}}} + \frac {\log \left (\frac {a^{\frac {1}{4}} x + {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{x}\right )}{4 \, a^{\frac {1}{4}}} - \frac {\log \left (-\frac {a^{\frac {1}{4}} x - {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{x}\right )}{4 \, a^{\frac {1}{4}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^8-b)/(a*x^4+b)^(1/4)/(a*x^8+b),x, algorithm="fricas")

[Out]

-(((a + b)*sqrt(-b/(a^3 + 2*a^2*b + a*b^2)) + 1)/(a + b))^(1/4)*arctan((x*sqrt(-(((a^2 + a*b)*x^2*sqrt(-b/(a^3
 + 2*a^2*b + a*b^2)) - a*x^2)*sqrt(((a + b)*sqrt(-b/(a^3 + 2*a^2*b + a*b^2)) + 1)/(a + b)) - sqrt(a*x^4 + b))/
x^2) - (a*x^4 + b)^(1/4))*(((a + b)*sqrt(-b/(a^3 + 2*a^2*b + a*b^2)) + 1)/(a + b))^(1/4)/x) - (-((a + b)*sqrt(
-b/(a^3 + 2*a^2*b + a*b^2)) - 1)/(a + b))^(1/4)*arctan((x*(-((a + b)*sqrt(-b/(a^3 + 2*a^2*b + a*b^2)) - 1)/(a
+ b))^(1/4)*sqrt((((a^2 + a*b)*x^2*sqrt(-b/(a^3 + 2*a^2*b + a*b^2)) + a*x^2)*sqrt(-((a + b)*sqrt(-b/(a^3 + 2*a
^2*b + a*b^2)) - 1)/(a + b)) + sqrt(a*x^4 + b))/x^2) - (a*x^4 + b)^(1/4)*(-((a + b)*sqrt(-b/(a^3 + 2*a^2*b + a
*b^2)) - 1)/(a + b))^(1/4))/x) + 1/4*(((a + b)*sqrt(-b/(a^3 + 2*a^2*b + a*b^2)) + 1)/(a + b))^(1/4)*log((((a^2
 + a*b)*x*sqrt(-b/(a^3 + 2*a^2*b + a*b^2)) - a*x)*(((a + b)*sqrt(-b/(a^3 + 2*a^2*b + a*b^2)) + 1)/(a + b))^(3/
4) + (a*x^4 + b)^(1/4))/x) - 1/4*(((a + b)*sqrt(-b/(a^3 + 2*a^2*b + a*b^2)) + 1)/(a + b))^(1/4)*log(-(((a^2 +
a*b)*x*sqrt(-b/(a^3 + 2*a^2*b + a*b^2)) - a*x)*(((a + b)*sqrt(-b/(a^3 + 2*a^2*b + a*b^2)) + 1)/(a + b))^(3/4)
- (a*x^4 + b)^(1/4))/x) - 1/4*(-((a + b)*sqrt(-b/(a^3 + 2*a^2*b + a*b^2)) - 1)/(a + b))^(1/4)*log((((a^2 + a*b
)*x*sqrt(-b/(a^3 + 2*a^2*b + a*b^2)) + a*x)*(-((a + b)*sqrt(-b/(a^3 + 2*a^2*b + a*b^2)) - 1)/(a + b))^(3/4) +
(a*x^4 + b)^(1/4))/x) + 1/4*(-((a + b)*sqrt(-b/(a^3 + 2*a^2*b + a*b^2)) - 1)/(a + b))^(1/4)*log(-(((a^2 + a*b)
*x*sqrt(-b/(a^3 + 2*a^2*b + a*b^2)) + a*x)*(-((a + b)*sqrt(-b/(a^3 + 2*a^2*b + a*b^2)) - 1)/(a + b))^(3/4) - (
a*x^4 + b)^(1/4))/x) + arctan((x*sqrt((sqrt(a)*x^2 + sqrt(a*x^4 + b))/x^2)/a^(1/4) - (a*x^4 + b)^(1/4)/a^(1/4)
)/x)/a^(1/4) + 1/4*log((a^(1/4)*x + (a*x^4 + b)^(1/4))/x)/a^(1/4) - 1/4*log(-(a^(1/4)*x - (a*x^4 + b)^(1/4))/x
)/a^(1/4)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a x^{8} - b}{\sqrt [4]{a x^{4} + b} \left (a x^{8} + b\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x**8-b)/(a*x**4+b)**(1/4)/(a*x**8+b),x)

[Out]

Integral((a*x**8 - b)/((a*x**4 + b)**(1/4)*(a*x**8 + b)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^8-b)/(a*x^4+b)^(1/4)/(a*x^8+b),x, algorithm="giac")

[Out]

integrate((a*x^8 - b)/((a*x^8 + b)*(a*x^4 + b)^(1/4)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int -\frac {b-a\,x^8}{{\left (a\,x^4+b\right )}^{1/4}\,\left (a\,x^8+b\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(b - a*x^8)/((b + a*x^4)^(1/4)*(b + a*x^8)),x)

[Out]

int(-(b - a*x^8)/((b + a*x^4)^(1/4)*(b + a*x^8)), x)

________________________________________________________________________________________