3.17.34 \(\int \frac {1-x+x^2}{(-2+2 x+x^2) \sqrt {1+x^3}} \, dx\) [1634]

Optimal. Leaf size=111 \[ -\frac {1}{2} \sqrt {\frac {1}{3} \left (3+2 \sqrt {3}\right )} \text {ArcTan}\left (\frac {\sqrt {3+2 \sqrt {3}} \sqrt {1+x^3}}{1-x+x^2}\right )-\frac {1}{2} \sqrt {\frac {1}{3} \left (-3+2 \sqrt {3}\right )} \tanh ^{-1}\left (\frac {\sqrt {-3+2 \sqrt {3}} \sqrt {1+x^3}}{1-x+x^2}\right ) \]

[Out]

-1/6*(9+6*3^(1/2))^(1/2)*arctan((3+2*3^(1/2))^(1/2)*(x^3+1)^(1/2)/(x^2-x+1))-1/6*(-9+6*3^(1/2))^(1/2)*arctanh(
(-3+2*3^(1/2))^(1/2)*(x^3+1)^(1/2)/(x^2-x+1))

________________________________________________________________________________________

Rubi [C] Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.
time = 0.58, antiderivative size = 412, normalized size of antiderivative = 3.71, number of steps used = 13, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {6860, 224, 2160, 2165, 212, 209} \begin {gather*} -\frac {\left (2+\sqrt {3}\right )^{3/2} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} F\left (\text {ArcSin}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{2 \sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}+\frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} F\left (\text {ArcSin}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {\sqrt {2-\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} F\left (\text {ArcSin}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{2 \sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {1}{2} \sqrt {\frac {1}{3} \left (3+2 \sqrt {3}\right )} \text {ArcTan}\left (\frac {\sqrt {3+2 \sqrt {3}} (x+1)}{\sqrt {x^3+1}}\right )-\frac {1}{2} \sqrt {\frac {1}{3} \left (2 \sqrt {3}-3\right )} \tanh ^{-1}\left (\frac {\sqrt {2 \sqrt {3}-3} (x+1)}{\sqrt {x^3+1}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 - x + x^2)/((-2 + 2*x + x^2)*Sqrt[1 + x^3]),x]

[Out]

-1/2*(Sqrt[(3 + 2*Sqrt[3])/3]*ArcTan[(Sqrt[3 + 2*Sqrt[3]]*(1 + x))/Sqrt[1 + x^3]]) - (Sqrt[(-3 + 2*Sqrt[3])/3]
*ArcTanh[(Sqrt[-3 + 2*Sqrt[3]]*(1 + x))/Sqrt[1 + x^3]])/2 - (Sqrt[2 - Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 +
 Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(2*3^(1/4)*Sqrt[(1 +
x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3]) + (2*Sqrt[2 + Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*
EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x
)^2]*Sqrt[1 + x^3]) - ((2 + Sqrt[3])^(3/2)*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1
 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(2*3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3
])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 2160

Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[-6*a*(d^3/(c*(b*c^3 - 28*a*d^3))), In
t[1/Sqrt[a + b*x^3], x], x] + Dist[1/(c*(b*c^3 - 28*a*d^3)), Int[Simp[c*(b*c^3 - 22*a*d^3) + 6*a*d^4*x, x]/((c
 + d*x)*Sqrt[a + b*x^3]), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0]

Rule 2165

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{k = Simplify[(d*e
+ 2*c*f)/(c*f)]}, Dist[(1 + k)*(e/d), Subst[Int[1/(1 + (3 + 2*k)*a*x^2), x], x, (1 + (1 + k)*d*(x/c))/Sqrt[a +
 b*x^3]], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6
, 0] && EqQ[6*a*d^4*e - c*f*(b*c^3 - 22*a*d^3), 0]

Rule 6860

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {1-x+x^2}{\left (-2+2 x+x^2\right ) \sqrt {1+x^3}} \, dx &=\int \left (\frac {1}{\sqrt {1+x^3}}+\frac {3 (1-x)}{\left (-2+2 x+x^2\right ) \sqrt {1+x^3}}\right ) \, dx\\ &=3 \int \frac {1-x}{\left (-2+2 x+x^2\right ) \sqrt {1+x^3}} \, dx+\int \frac {1}{\sqrt {1+x^3}} \, dx\\ &=\frac {2 \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+3 \int \left (\frac {-1+\frac {2}{\sqrt {3}}}{\left (2-2 \sqrt {3}+2 x\right ) \sqrt {1+x^3}}+\frac {-1-\frac {2}{\sqrt {3}}}{\left (2+2 \sqrt {3}+2 x\right ) \sqrt {1+x^3}}\right ) \, dx\\ &=\frac {2 \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\left (-3+2 \sqrt {3}\right ) \int \frac {1}{\left (2-2 \sqrt {3}+2 x\right ) \sqrt {1+x^3}} \, dx-\left (3+2 \sqrt {3}\right ) \int \frac {1}{\left (2+2 \sqrt {3}+2 x\right ) \sqrt {1+x^3}} \, dx\\ &=\frac {2 \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {1}{192} \left (2-\sqrt {3}\right ) \int \frac {96 \left (1+\sqrt {3}\right )+96 x}{\left (2-2 \sqrt {3}+2 x\right ) \sqrt {1+x^3}} \, dx+\frac {1}{4} \left (-2+\sqrt {3}\right ) \int \frac {1}{\sqrt {1+x^3}} \, dx+\frac {1}{192} \left (2+\sqrt {3}\right ) \int \frac {96 \left (1-\sqrt {3}\right )+96 x}{\left (2+2 \sqrt {3}+2 x\right ) \sqrt {1+x^3}} \, dx-\frac {1}{4} \left (2+\sqrt {3}\right ) \int \frac {1}{\sqrt {1+x^3}} \, dx\\ &=-\frac {\sqrt {2-\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{2 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {2 \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}-\frac {\left (2+\sqrt {3}\right )^{3/2} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{2 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {1}{2} \left (-2-\sqrt {3}\right ) \text {Subst}\left (\int \frac {1}{1+\left (3+2 \sqrt {3}\right ) x^2} \, dx,x,\frac {1+\frac {2 \left (1+\sqrt {3}\right ) x}{2+2 \sqrt {3}}}{\sqrt {1+x^3}}\right )+\frac {1}{2} \left (-2+\sqrt {3}\right ) \text {Subst}\left (\int \frac {1}{1+\left (3-2 \sqrt {3}\right ) x^2} \, dx,x,\frac {1+\frac {2 \left (1-\sqrt {3}\right ) x}{2-2 \sqrt {3}}}{\sqrt {1+x^3}}\right )\\ &=-\frac {1}{2} \sqrt {1+\frac {2}{\sqrt {3}}} \tan ^{-1}\left (\frac {\sqrt {3+2 \sqrt {3}} (1+x)}{\sqrt {1+x^3}}\right )-\frac {1}{2} \sqrt {-1+\frac {2}{\sqrt {3}}} \tanh ^{-1}\left (\frac {\sqrt {-3+2 \sqrt {3}} (1+x)}{\sqrt {1+x^3}}\right )-\frac {\sqrt {2-\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{2 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {2 \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}-\frac {\left (2+\sqrt {3}\right )^{3/2} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{2 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.89, size = 106, normalized size = 0.95 \begin {gather*} -\frac {\sqrt {3+2 \sqrt {3}} \text {ArcTan}\left (\frac {\sqrt {3+2 \sqrt {3}} \sqrt {1+x^3}}{1-x+x^2}\right )+\sqrt {-3+2 \sqrt {3}} \tanh ^{-1}\left (\frac {\sqrt {-3+2 \sqrt {3}} \sqrt {1+x^3}}{1-x+x^2}\right )}{2 \sqrt {3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 - x + x^2)/((-2 + 2*x + x^2)*Sqrt[1 + x^3]),x]

[Out]

-1/2*(Sqrt[3 + 2*Sqrt[3]]*ArcTan[(Sqrt[3 + 2*Sqrt[3]]*Sqrt[1 + x^3])/(1 - x + x^2)] + Sqrt[-3 + 2*Sqrt[3]]*Arc
Tanh[(Sqrt[-3 + 2*Sqrt[3]]*Sqrt[1 + x^3])/(1 - x + x^2)])/Sqrt[3]

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 2.38, size = 1501, normalized size = 13.52

method result size
trager \(-\frac {\RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right ) \ln \left (-\frac {240 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{5} x^{2}-480 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{5} x +232 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{3} x^{2}-304 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{3} x +32 \sqrt {x^{3}+1}\, \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{2}+160 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{3}+55 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right ) x^{2}-22 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right ) x +16 \sqrt {x^{3}+1}+88 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )}{\left (12 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{2} x +5 x -4\right )^{2}}\right )}{2}+\frac {\RootOf \left (\textit {\_Z}^{2}+4 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{2}+2\right ) \ln \left (\frac {240 \RootOf \left (\textit {\_Z}^{2}+4 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{2}+2\right ) \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{4} x^{2}-480 \RootOf \left (\textit {\_Z}^{2}+4 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{2}+2\right ) \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{4} x +8 \RootOf \left (\textit {\_Z}^{2}+4 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{2}+2\right ) \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{2} x^{2}-176 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{2} \RootOf \left (\textit {\_Z}^{2}+4 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{2}+2\right ) x +64 \sqrt {x^{3}+1}\, \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{2}-160 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{2} \RootOf \left (\textit {\_Z}^{2}+4 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{2}+2\right )-\RootOf \left (\textit {\_Z}^{2}+4 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{2}+2\right ) x^{2}+10 \RootOf \left (\textit {\_Z}^{2}+4 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{2}+2\right ) x +8 \RootOf \left (\textit {\_Z}^{2}+4 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{2}+2\right )}{\left (12 \RootOf \left (48 \textit {\_Z}^{4}+24 \textit {\_Z}^{2}-1\right )^{2} x +x +4\right )^{2}}\right )}{4}\) \(583\)
default \(\text {Expression too large to display}\) \(1501\)
elliptic \(\text {Expression too large to display}\) \(1706\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2-x+1)/(x^2+2*x-2)/(x^3+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x
-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*EllipticF(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3
/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))-3*(1/(3/2-1/2*I*3^(1/2))+1/(3/2-1/2*I*3^(1/2))*x)^(1/2)*(1/(-3/
2-1/2*I*3^(1/2))*x-1/2/(-3/2-1/2*I*3^(1/2))-1/2*I/(-3/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*(1/(-3/2+1/2*I*3^(1/2))*
x-1/2/(-3/2+1/2*I*3^(1/2))+1/2*I/(-3/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(x^3+1)^(1/2)*EllipticPi(((1+x)/(3/2-1/2*
I*3^(1/2)))^(1/2),-1/3*(-3/2+1/2*I*3^(1/2))*3^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))-3/2*I*(
1/(3/2-1/2*I*3^(1/2))+1/(3/2-1/2*I*3^(1/2))*x)^(1/2)*(1/(-3/2-1/2*I*3^(1/2))*x-1/2/(-3/2-1/2*I*3^(1/2))-1/2*I/
(-3/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*(1/(-3/2+1/2*I*3^(1/2))*x-1/2/(-3/2+1/2*I*3^(1/2))+1/2*I/(-3/2+1/2*I*3^(1/
2))*3^(1/2))^(1/2)/(x^3+1)^(1/2)*EllipticPi(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),-1/3*(-3/2+1/2*I*3^(1/2))*3^(1/2
),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))+I*(1/(3/2-1/2*I*3^(1/2))+1/(3/2-1/2*I*3^(1/2))*x)^(1/2)*(
1/(-3/2-1/2*I*3^(1/2))*x-1/2/(-3/2-1/2*I*3^(1/2))-1/2*I/(-3/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*(1/(-3/2+1/2*I*3^(
1/2))*x-1/2/(-3/2+1/2*I*3^(1/2))+1/2*I/(-3/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(x^3+1)^(1/2)*EllipticPi(((1+x)/(3/
2-1/2*I*3^(1/2)))^(1/2),-1/3*(-3/2+1/2*I*3^(1/2))*3^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))*3
^(1/2)+3/2*(1/(3/2-1/2*I*3^(1/2))+1/(3/2-1/2*I*3^(1/2))*x)^(1/2)*(1/(-3/2-1/2*I*3^(1/2))*x-1/2/(-3/2-1/2*I*3^(
1/2))-1/2*I/(-3/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*(1/(-3/2+1/2*I*3^(1/2))*x-1/2/(-3/2+1/2*I*3^(1/2))+1/2*I/(-3/2
+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(x^3+1)^(1/2)*3^(1/2)*EllipticPi(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),-1/3*(-3/2+1
/2*I*3^(1/2))*3^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))-3*(1/(3/2-1/2*I*3^(1/2))+1/(3/2-1/2*I
*3^(1/2))*x)^(1/2)*(1/(-3/2-1/2*I*3^(1/2))*x-1/2/(-3/2-1/2*I*3^(1/2))-1/2*I/(-3/2-1/2*I*3^(1/2))*3^(1/2))^(1/2
)*(1/(-3/2+1/2*I*3^(1/2))*x-1/2/(-3/2+1/2*I*3^(1/2))+1/2*I/(-3/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(x^3+1)^(1/2)*E
llipticPi(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),1/3*(-3/2+1/2*I*3^(1/2))*3^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I
*3^(1/2)))^(1/2))+3/2*I*(1/(3/2-1/2*I*3^(1/2))+1/(3/2-1/2*I*3^(1/2))*x)^(1/2)*(1/(-3/2-1/2*I*3^(1/2))*x-1/2/(-
3/2-1/2*I*3^(1/2))-1/2*I/(-3/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*(1/(-3/2+1/2*I*3^(1/2))*x-1/2/(-3/2+1/2*I*3^(1/2)
)+1/2*I/(-3/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(x^3+1)^(1/2)*EllipticPi(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),1/3*(-3
/2+1/2*I*3^(1/2))*3^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))+I*(1/(3/2-1/2*I*3^(1/2))+1/(3/2-1
/2*I*3^(1/2))*x)^(1/2)*(1/(-3/2-1/2*I*3^(1/2))*x-1/2/(-3/2-1/2*I*3^(1/2))-1/2*I/(-3/2-1/2*I*3^(1/2))*3^(1/2))^
(1/2)*(1/(-3/2+1/2*I*3^(1/2))*x-1/2/(-3/2+1/2*I*3^(1/2))+1/2*I/(-3/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(x^3+1)^(1/
2)*EllipticPi(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),1/3*(-3/2+1/2*I*3^(1/2))*3^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1
/2*I*3^(1/2)))^(1/2))*3^(1/2)-3/2*(1/(3/2-1/2*I*3^(1/2))+1/(3/2-1/2*I*3^(1/2))*x)^(1/2)*(1/(-3/2-1/2*I*3^(1/2)
)*x-1/2/(-3/2-1/2*I*3^(1/2))-1/2*I/(-3/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*(1/(-3/2+1/2*I*3^(1/2))*x-1/2/(-3/2+1/2
*I*3^(1/2))+1/2*I/(-3/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(x^3+1)^(1/2)*3^(1/2)*EllipticPi(((1+x)/(3/2-1/2*I*3^(1/
2)))^(1/2),1/3*(-3/2+1/2*I*3^(1/2))*3^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2-x+1)/(x^2+2*x-2)/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((x^2 - x + 1)/(sqrt(x^3 + 1)*(x^2 + 2*x - 2)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 229 vs. \(2 (79) = 158\).
time = 0.49, size = 229, normalized size = 2.06 \begin {gather*} -\frac {1}{6} \, \sqrt {3} \sqrt {2 \, \sqrt {3} + 3} \arctan \left (\frac {\sqrt {x^{3} + 1} \sqrt {2 \, \sqrt {3} + 3}}{x^{2} - x + 1}\right ) - \frac {1}{24} \, \sqrt {3} \sqrt {2 \, \sqrt {3} - 3} \log \left (\frac {x^{4} - 2 \, x^{3} + 6 \, x^{2} + 2 \, \sqrt {x^{3} + 1} {\left (x^{2} + 2 \, \sqrt {3} {\left (x + 1\right )} + 2 \, x + 4\right )} \sqrt {2 \, \sqrt {3} - 3} + 4 \, \sqrt {3} {\left (x^{3} + 1\right )} + 4 \, x + 4}{x^{4} + 4 \, x^{3} - 8 \, x + 4}\right ) + \frac {1}{24} \, \sqrt {3} \sqrt {2 \, \sqrt {3} - 3} \log \left (\frac {x^{4} - 2 \, x^{3} + 6 \, x^{2} - 2 \, \sqrt {x^{3} + 1} {\left (x^{2} + 2 \, \sqrt {3} {\left (x + 1\right )} + 2 \, x + 4\right )} \sqrt {2 \, \sqrt {3} - 3} + 4 \, \sqrt {3} {\left (x^{3} + 1\right )} + 4 \, x + 4}{x^{4} + 4 \, x^{3} - 8 \, x + 4}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2-x+1)/(x^2+2*x-2)/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

-1/6*sqrt(3)*sqrt(2*sqrt(3) + 3)*arctan(sqrt(x^3 + 1)*sqrt(2*sqrt(3) + 3)/(x^2 - x + 1)) - 1/24*sqrt(3)*sqrt(2
*sqrt(3) - 3)*log((x^4 - 2*x^3 + 6*x^2 + 2*sqrt(x^3 + 1)*(x^2 + 2*sqrt(3)*(x + 1) + 2*x + 4)*sqrt(2*sqrt(3) -
3) + 4*sqrt(3)*(x^3 + 1) + 4*x + 4)/(x^4 + 4*x^3 - 8*x + 4)) + 1/24*sqrt(3)*sqrt(2*sqrt(3) - 3)*log((x^4 - 2*x
^3 + 6*x^2 - 2*sqrt(x^3 + 1)*(x^2 + 2*sqrt(3)*(x + 1) + 2*x + 4)*sqrt(2*sqrt(3) - 3) + 4*sqrt(3)*(x^3 + 1) + 4
*x + 4)/(x^4 + 4*x^3 - 8*x + 4))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} - x + 1}{\sqrt {\left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (x^{2} + 2 x - 2\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2-x+1)/(x**2+2*x-2)/(x**3+1)**(1/2),x)

[Out]

Integral((x**2 - x + 1)/(sqrt((x + 1)*(x**2 - x + 1))*(x**2 + 2*x - 2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2-x+1)/(x^2+2*x-2)/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate((x^2 - x + 1)/(sqrt(x^3 + 1)*(x^2 + 2*x - 2)), x)

________________________________________________________________________________________

Mupad [B]
time = 0.97, size = 509, normalized size = 4.59 \begin {gather*} \frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}+\frac {\left (3\,\sqrt {3}-6\right )\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (\frac {\sqrt {3}\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{3};\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{3\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}-\frac {\left (3\,\sqrt {3}+6\right )\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (-\frac {\sqrt {3}\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{3};\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{3\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2 - x + 1)/((x^3 + 1)^(1/2)*(2*x + x^2 - 2)),x)

[Out]

(2*((3^(1/2)*1i)/2 + 3/2)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + 1)/((3^(1/2)*1i)/2 +
 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticF(asin(((x + 1)/((3^(1/2)*1i)/2
 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1
i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2) + ((3*3^(1/2) - 6)*((3^(1/2)*1i)/2 + 3
/2)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2
)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticPi((3^(1/2)*((3^(1/2)*1i)/2 + 3/2))/3, asin(((x + 1)/
((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(3*(x^3 - x*(((3^(1/2)*1i)/2
- 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2)) - ((3*3^(1/2) + 6)*
((3^(1/2)*1i)/2 + 3/2)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + 1)/((3^(1/2)*1i)/2 + 3/
2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticPi(-(3^(1/2)*((3^(1/2)*1i)/2 + 3/2
))/3, asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(3*(x^3 -
 x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2))

________________________________________________________________________________________