3.2.37 \(\int \frac {x}{\sqrt {x+x^4}} \, dx\) [137]

Optimal. Leaf size=18 \[ \frac {2}{3} \tanh ^{-1}\left (\frac {x^2}{\sqrt {x+x^4}}\right ) \]

[Out]

2/3*arctanh(x^2/(x^4+x)^(1/2))

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {2054, 212} \begin {gather*} \frac {2}{3} \tanh ^{-1}\left (\frac {x^2}{\sqrt {x^4+x}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x/Sqrt[x + x^4],x]

[Out]

(2*ArcTanh[x^2/Sqrt[x + x^4]])/3

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2054

Int[(x_)^(m_.)/Sqrt[(a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[-2/(n - j), Subst[Int[1/(1 - a*x^2
), x], x, x^(j/2)/Sqrt[a*x^j + b*x^n]], x] /; FreeQ[{a, b, j, n}, x] && EqQ[m, j/2 - 1] && NeQ[n, j]

Rubi steps

\begin {align*} \int \frac {x}{\sqrt {x+x^4}} \, dx &=\frac {2}{3} \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {x^2}{\sqrt {x+x^4}}\right )\\ &=\frac {2}{3} \tanh ^{-1}\left (\frac {x^2}{\sqrt {x+x^4}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(43\) vs. \(2(18)=36\).
time = 0.09, size = 43, normalized size = 2.39 \begin {gather*} \frac {2 \sqrt {x} \sqrt {1+x^3} \tanh ^{-1}\left (\frac {x^{3/2}}{\sqrt {1+x^3}}\right )}{3 \sqrt {x+x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x/Sqrt[x + x^4],x]

[Out]

(2*Sqrt[x]*Sqrt[1 + x^3]*ArcTanh[x^(3/2)/Sqrt[1 + x^3]])/(3*Sqrt[x + x^4])

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 0.29, size = 290, normalized size = 16.11

method result size
meijerg \(\frac {2 \arcsinh \left (x^{\frac {3}{2}}\right )}{3}\) \(7\)
trager \(\frac {\ln \left (-2 x^{3}-2 x \sqrt {x^{4}+x}-1\right )}{3}\) \(21\)
default \(-\frac {2 \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (1+x \right )^{2} \sqrt {-\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \sqrt {-\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (-\EllipticF \left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )+\EllipticPi \left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \frac {\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )\right )}{\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {x \left (1+x \right ) \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}}\) \(290\)
elliptic \(-\frac {2 \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (1+x \right )^{2} \sqrt {-\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \sqrt {-\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (-\EllipticF \left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )+\EllipticPi \left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \frac {\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )\right )}{\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {x \left (1+x \right ) \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}}\) \(290\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(x^4+x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*(-1/2-1/2*I*3^(1/2))*((3/2+1/2*I*3^(1/2))*x/(1/2+1/2*I*3^(1/2))/(1+x))^(1/2)*(1+x)^2*(-(x-1/2+1/2*I*3^(1/2)
)/(1/2-1/2*I*3^(1/2))/(1+x))^(1/2)*(-(x-1/2-1/2*I*3^(1/2))/(1/2+1/2*I*3^(1/2))/(1+x))^(1/2)/(3/2+1/2*I*3^(1/2)
)/(x*(1+x)*(x-1/2+1/2*I*3^(1/2))*(x-1/2-1/2*I*3^(1/2)))^(1/2)*(-EllipticF(((3/2+1/2*I*3^(1/2))*x/(1/2+1/2*I*3^
(1/2))/(1+x))^(1/2),((-3/2+1/2*I*3^(1/2))*(-1/2-1/2*I*3^(1/2))/(-1/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2
))+EllipticPi(((3/2+1/2*I*3^(1/2))*x/(1/2+1/2*I*3^(1/2))/(1+x))^(1/2),(1/2+1/2*I*3^(1/2))/(3/2+1/2*I*3^(1/2)),
((-3/2+1/2*I*3^(1/2))*(-1/2-1/2*I*3^(1/2))/(-1/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(x^4+x)^(1/2),x, algorithm="maxima")

[Out]

integrate(x/sqrt(x^4 + x), x)

________________________________________________________________________________________

Fricas [A]
time = 0.39, size = 20, normalized size = 1.11 \begin {gather*} \frac {1}{3} \, \log \left (-2 \, x^{3} - 2 \, \sqrt {x^{4} + x} x - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(x^4+x)^(1/2),x, algorithm="fricas")

[Out]

1/3*log(-2*x^3 - 2*sqrt(x^4 + x)*x - 1)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x}{\sqrt {x \left (x + 1\right ) \left (x^{2} - x + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(x**4+x)**(1/2),x)

[Out]

Integral(x/sqrt(x*(x + 1)*(x**2 - x + 1)), x)

________________________________________________________________________________________

Giac [A]
time = 0.40, size = 26, normalized size = 1.44 \begin {gather*} \frac {1}{3} \, \log \left (\sqrt {\frac {1}{x^{3}} + 1} + 1\right ) - \frac {1}{3} \, \log \left ({\left | \sqrt {\frac {1}{x^{3}} + 1} - 1 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(x^4+x)^(1/2),x, algorithm="giac")

[Out]

1/3*log(sqrt(1/x^3 + 1) + 1) - 1/3*log(abs(sqrt(1/x^3 + 1) - 1))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.06 \begin {gather*} \int \frac {x}{\sqrt {x^4+x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(x + x^4)^(1/2),x)

[Out]

int(x/(x + x^4)^(1/2), x)

________________________________________________________________________________________