3.5.74 \(\int \frac {1+k x^2}{(-1+k x^2) \sqrt {(1-x^2) (1-k^2 x^2)}} \, dx\) [474]

Optimal. Leaf size=38 \[ \frac {\text {ArcTan}\left (\frac {(-1+k) x}{\sqrt {1+\left (-1-k^2\right ) x^2+k^2 x^4}}\right )}{1-k} \]

[Out]

arctan((-1+k)*x/(1+(-k^2-1)*x^2+k^2*x^4)^(1/2))/(1-k)

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 41, normalized size of antiderivative = 1.08, number of steps used = 3, number of rules used = 3, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {1976, 1712, 210} \begin {gather*} -\frac {\text {ArcTan}\left (\frac {(1-k) x}{\sqrt {k^2 x^4+\left (-k^2-1\right ) x^2+1}}\right )}{1-k} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 + k*x^2)/((-1 + k*x^2)*Sqrt[(1 - x^2)*(1 - k^2*x^2)]),x]

[Out]

-(ArcTan[((1 - k)*x)/Sqrt[1 + (-1 - k^2)*x^2 + k^2*x^4]]/(1 - k))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1712

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Dist[
A, Subst[Int[1/(d - (b*d - 2*a*e)*x^2), x], x, x/Sqrt[a + b*x^2 + c*x^4]], x] /; FreeQ[{a, b, c, d, e, A, B},
x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[c*d^2 - a*e^2, 0] && EqQ[B*d + A*e, 0]

Rule 1976

Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))*((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Int[u*(a*c*e + (b*c
+ a*d)*e*x^n + b*d*e*x^(2*n))^p, x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rubi steps

\begin {align*} \int \frac {1+k x^2}{\left (-1+k x^2\right ) \sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )}} \, dx &=\frac {\left (\sqrt {1-x^2} \sqrt {1-k^2 x^2}\right ) \int \frac {1+k x^2}{\sqrt {1-x^2} \left (-1+k x^2\right ) \sqrt {1-k^2 x^2}} \, dx}{\sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )}}\\ &=\frac {\left (\sqrt {1-x^2} \sqrt {1-k^2 x^2}\right ) \int \left (\frac {1}{\sqrt {1-x^2} \sqrt {1-k^2 x^2}}+\frac {2}{\sqrt {1-x^2} \left (-1+k x^2\right ) \sqrt {1-k^2 x^2}}\right ) \, dx}{\sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )}}\\ &=\frac {\left (\sqrt {1-x^2} \sqrt {1-k^2 x^2}\right ) \int \frac {1}{\sqrt {1-x^2} \sqrt {1-k^2 x^2}} \, dx}{\sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )}}+\frac {\left (2 \sqrt {1-x^2} \sqrt {1-k^2 x^2}\right ) \int \frac {1}{\sqrt {1-x^2} \left (-1+k x^2\right ) \sqrt {1-k^2 x^2}} \, dx}{\sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )}}\\ &=\frac {\sqrt {1-x^2} \sqrt {1-k^2 x^2} F\left (\sin ^{-1}(x)|k^2\right )}{\sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )}}-\frac {2 \sqrt {1-x^2} \sqrt {1-k^2 x^2} \Pi \left (k;\sin ^{-1}(x)|k^2\right )}{\sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.
time = 4.00, size = 61, normalized size = 1.61 \begin {gather*} \frac {\sqrt {1-x^2} \sqrt {1-k^2 x^2} \left (F\left (\text {ArcSin}(x)\left |k^2\right .\right )-2 \Pi \left (k;\text {ArcSin}(x)\left |k^2\right .\right )\right )}{\sqrt {\left (-1+x^2\right ) \left (-1+k^2 x^2\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 + k*x^2)/((-1 + k*x^2)*Sqrt[(1 - x^2)*(1 - k^2*x^2)]),x]

[Out]

(Sqrt[1 - x^2]*Sqrt[1 - k^2*x^2]*(EllipticF[ArcSin[x], k^2] - 2*EllipticPi[k, ArcSin[x], k^2]))/Sqrt[(-1 + x^2
)*(-1 + k^2*x^2)]

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 0.34, size = 102, normalized size = 2.68

method result size
elliptic \(\frac {\arctan \left (\frac {\sqrt {\left (-x^{2}+1\right ) \left (-k^{2} x^{2}+1\right )}}{x \left (-1+k \right )}\right )}{-1+k}\) \(37\)
default \(\frac {\sqrt {-x^{2}+1}\, \sqrt {-k^{2} x^{2}+1}\, \EllipticF \left (x , k\right )}{\sqrt {k^{2} x^{4}-k^{2} x^{2}-x^{2}+1}}-\frac {2 \sqrt {-x^{2}+1}\, \sqrt {-k^{2} x^{2}+1}\, \EllipticPi \left (x , k , k\right )}{\sqrt {k^{2} x^{4}-k^{2} x^{2}-x^{2}+1}}\) \(102\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((k*x^2+1)/(k*x^2-1)/((-x^2+1)*(-k^2*x^2+1))^(1/2),x,method=_RETURNVERBOSE)

[Out]

(-x^2+1)^(1/2)*(-k^2*x^2+1)^(1/2)/(k^2*x^4-k^2*x^2-x^2+1)^(1/2)*EllipticF(x,k)-2*(-x^2+1)^(1/2)*(-k^2*x^2+1)^(
1/2)/(k^2*x^4-k^2*x^2-x^2+1)^(1/2)*EllipticPi(x,k,k)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((k*x^2+1)/(k*x^2-1)/((-x^2+1)*(-k^2*x^2+1))^(1/2),x, algorithm="maxima")

[Out]

integrate((k*x^2 + 1)/((k*x^2 - 1)*sqrt((k^2*x^2 - 1)*(x^2 - 1))), x)

________________________________________________________________________________________

Fricas [A]
time = 0.41, size = 37, normalized size = 0.97 \begin {gather*} \frac {\arctan \left (\frac {\sqrt {k^{2} x^{4} - {\left (k^{2} + 1\right )} x^{2} + 1}}{{\left (k - 1\right )} x}\right )}{k - 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((k*x^2+1)/(k*x^2-1)/((-x^2+1)*(-k^2*x^2+1))^(1/2),x, algorithm="fricas")

[Out]

arctan(sqrt(k^2*x^4 - (k^2 + 1)*x^2 + 1)/((k - 1)*x))/(k - 1)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {k x^{2} + 1}{\sqrt {\left (x - 1\right ) \left (x + 1\right ) \left (k x - 1\right ) \left (k x + 1\right )} \left (k x^{2} - 1\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((k*x**2+1)/(k*x**2-1)/((-x**2+1)*(-k**2*x**2+1))**(1/2),x)

[Out]

Integral((k*x**2 + 1)/(sqrt((x - 1)*(x + 1)*(k*x - 1)*(k*x + 1))*(k*x**2 - 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((k*x^2+1)/(k*x^2-1)/((-x^2+1)*(-k^2*x^2+1))^(1/2),x, algorithm="giac")

[Out]

integrate((k*x^2 + 1)/((k*x^2 - 1)*sqrt((k^2*x^2 - 1)*(x^2 - 1))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {k\,x^2+1}{\left (k\,x^2-1\right )\,\sqrt {\left (x^2-1\right )\,\left (k^2\,x^2-1\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((k*x^2 + 1)/((k*x^2 - 1)*((x^2 - 1)*(k^2*x^2 - 1))^(1/2)),x)

[Out]

int((k*x^2 + 1)/((k*x^2 - 1)*((x^2 - 1)*(k^2*x^2 - 1))^(1/2)), x)

________________________________________________________________________________________