3.7.35 \(\int x^6 \sqrt {-x+x^4} \, dx\) [635]

Optimal. Leaf size=50 \[ \frac {1}{72} \sqrt {-x+x^4} \left (-3 x-2 x^4+8 x^7\right )-\frac {1}{24} \tanh ^{-1}\left (\frac {x^2}{\sqrt {-x+x^4}}\right ) \]

[Out]

1/72*(x^4-x)^(1/2)*(8*x^7-2*x^4-3*x)-1/24*arctanh(x^2/(x^4-x)^(1/2))

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 73, normalized size of antiderivative = 1.46, number of steps used = 5, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {2046, 2049, 2054, 212} \begin {gather*} -\frac {1}{36} \sqrt {x^4-x} x^4-\frac {1}{24} \sqrt {x^4-x} x+\frac {1}{9} \sqrt {x^4-x} x^7-\frac {1}{24} \tanh ^{-1}\left (\frac {x^2}{\sqrt {x^4-x}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^6*Sqrt[-x + x^4],x]

[Out]

-1/24*(x*Sqrt[-x + x^4]) - (x^4*Sqrt[-x + x^4])/36 + (x^7*Sqrt[-x + x^4])/9 - ArcTanh[x^2/Sqrt[-x + x^4]]/24

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2046

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a*x^j + b
*x^n)^p/(c*(m + n*p + 1))), x] + Dist[a*(n - j)*(p/(c^j*(m + n*p + 1))), Int[(c*x)^(m + j)*(a*x^j + b*x^n)^(p
- 1), x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && G
tQ[p, 0] && NeQ[m + n*p + 1, 0]

Rule 2049

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n +
1)*((a*x^j + b*x^n)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^(n - j)*((m + j*p - n + j + 1)/(b*(m + n*p + 1))
), Int[(c*x)^(m - (n - j))*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j
, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[m + j*p + 1 - n + j, 0] && NeQ[m + n*p + 1, 0]

Rule 2054

Int[(x_)^(m_.)/Sqrt[(a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[-2/(n - j), Subst[Int[1/(1 - a*x^2
), x], x, x^(j/2)/Sqrt[a*x^j + b*x^n]], x] /; FreeQ[{a, b, j, n}, x] && EqQ[m, j/2 - 1] && NeQ[n, j]

Rubi steps

\begin {align*} \int x^6 \sqrt {-x+x^4} \, dx &=\frac {1}{9} x^7 \sqrt {-x+x^4}-\frac {1}{6} \int \frac {x^7}{\sqrt {-x+x^4}} \, dx\\ &=-\frac {1}{36} x^4 \sqrt {-x+x^4}+\frac {1}{9} x^7 \sqrt {-x+x^4}-\frac {1}{8} \int \frac {x^4}{\sqrt {-x+x^4}} \, dx\\ &=-\frac {1}{24} x \sqrt {-x+x^4}-\frac {1}{36} x^4 \sqrt {-x+x^4}+\frac {1}{9} x^7 \sqrt {-x+x^4}-\frac {1}{16} \int \frac {x}{\sqrt {-x+x^4}} \, dx\\ &=-\frac {1}{24} x \sqrt {-x+x^4}-\frac {1}{36} x^4 \sqrt {-x+x^4}+\frac {1}{9} x^7 \sqrt {-x+x^4}-\frac {1}{24} \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {x^2}{\sqrt {-x+x^4}}\right )\\ &=-\frac {1}{24} x \sqrt {-x+x^4}-\frac {1}{36} x^4 \sqrt {-x+x^4}+\frac {1}{9} x^7 \sqrt {-x+x^4}-\frac {1}{24} \tanh ^{-1}\left (\frac {x^2}{\sqrt {-x+x^4}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.12, size = 66, normalized size = 1.32 \begin {gather*} \frac {\sqrt {x \left (-1+x^3\right )} \left (x^{3/2} \left (-3-2 x^3+8 x^6\right )-\frac {3 \tanh ^{-1}\left (\frac {\sqrt {-1+x^3}}{x^{3/2}}\right )}{\sqrt {-1+x^3}}\right )}{72 \sqrt {x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^6*Sqrt[-x + x^4],x]

[Out]

(Sqrt[x*(-1 + x^3)]*(x^(3/2)*(-3 - 2*x^3 + 8*x^6) - (3*ArcTanh[Sqrt[-1 + x^3]/x^(3/2)])/Sqrt[-1 + x^3]))/(72*S
qrt[x])

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 1.48, size = 329, normalized size = 6.58 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6*(x^4-x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/9*x^7*(x^4-x)^(1/2)-1/36*x^4*(x^4-x)^(1/2)-1/24*x*(x^4-x)^(1/2)-1/8*(1/2-1/2*I*3^(1/2))*((-3/2+1/2*I*3^(1/2)
)*x/(-1/2+1/2*I*3^(1/2))/(-1+x))^(1/2)*(-1+x)^2*((x+1/2+1/2*I*3^(1/2))/(-1/2-1/2*I*3^(1/2))/(-1+x))^(1/2)*((x+
1/2-1/2*I*3^(1/2))/(-1/2+1/2*I*3^(1/2))/(-1+x))^(1/2)/(-3/2+1/2*I*3^(1/2))/(x*(-1+x)*(x+1/2+1/2*I*3^(1/2))*(x+
1/2-1/2*I*3^(1/2)))^(1/2)*(EllipticF(((-3/2+1/2*I*3^(1/2))*x/(-1/2+1/2*I*3^(1/2))/(-1+x))^(1/2),((3/2+1/2*I*3^
(1/2))*(1/2-1/2*I*3^(1/2))/(1/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))-EllipticPi(((-3/2+1/2*I*3^(1/2))*x/
(-1/2+1/2*I*3^(1/2))/(-1+x))^(1/2),(-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)),((3/2+1/2*I*3^(1/2))*(1/2-1/2*I*3
^(1/2))/(1/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6*(x^4-x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x^4 - x)*x^6, x)

________________________________________________________________________________________

Fricas [A]
time = 0.41, size = 48, normalized size = 0.96 \begin {gather*} \frac {1}{72} \, {\left (8 \, x^{7} - 2 \, x^{4} - 3 \, x\right )} \sqrt {x^{4} - x} + \frac {1}{48} \, \log \left (2 \, x^{3} - 2 \, \sqrt {x^{4} - x} x - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6*(x^4-x)^(1/2),x, algorithm="fricas")

[Out]

1/72*(8*x^7 - 2*x^4 - 3*x)*sqrt(x^4 - x) + 1/48*log(2*x^3 - 2*sqrt(x^4 - x)*x - 1)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{6} \sqrt {x \left (x - 1\right ) \left (x^{2} + x + 1\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**6*(x**4-x)**(1/2),x)

[Out]

Integral(x**6*sqrt(x*(x - 1)*(x**2 + x + 1)), x)

________________________________________________________________________________________

Giac [A]
time = 0.43, size = 56, normalized size = 1.12 \begin {gather*} \frac {1}{72} \, {\left (2 \, {\left (4 \, x^{3} - 1\right )} x^{3} - 3\right )} \sqrt {x^{4} - x} x - \frac {1}{48} \, \log \left (\sqrt {-\frac {1}{x^{3}} + 1} + 1\right ) + \frac {1}{48} \, \log \left ({\left | \sqrt {-\frac {1}{x^{3}} + 1} - 1 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6*(x^4-x)^(1/2),x, algorithm="giac")

[Out]

1/72*(2*(4*x^3 - 1)*x^3 - 3)*sqrt(x^4 - x)*x - 1/48*log(sqrt(-1/x^3 + 1) + 1) + 1/48*log(abs(sqrt(-1/x^3 + 1)
- 1))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int x^6\,\sqrt {x^4-x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6*(x^4 - x)^(1/2),x)

[Out]

int(x^6*(x^4 - x)^(1/2), x)

________________________________________________________________________________________