3.8.80 \(\int \frac {-b+a^2 x^2}{(b+2 a b x+a^2 x^2) \sqrt {b x+a^2 x^3}} \, dx\) [780]

Optimal. Leaf size=60 \[ -\frac {\sqrt {2} \text {ArcTan}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {b} \sqrt {b x+a^2 x^3}}{b+a^2 x^2}\right )}{\sqrt {a} \sqrt {b}} \]

[Out]

-2^(1/2)*arctan(2^(1/2)*a^(1/2)*b^(1/2)*(a^2*x^3+b*x)^(1/2)/(a^2*x^2+b))/a^(1/2)/b^(1/2)

________________________________________________________________________________________

Rubi [C] Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.
time = 1.40, antiderivative size = 290, normalized size of antiderivative = 4.83, number of steps used = 13, number of rules used = 7, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.163, Rules used = {2081, 6860, 335, 226, 947, 174, 551} \begin {gather*} -\frac {2 \sqrt [4]{-b} \sqrt {x} \sqrt {\frac {a^2 x^2}{b}+1} \Pi \left (\frac {\sqrt {-b}}{\left (\sqrt {b-1}-\sqrt {b}\right ) \sqrt {b}};\left .\text {ArcSin}\left (\frac {\sqrt {a} \sqrt {x}}{\sqrt [4]{-b}}\right )\right |-1\right )}{\sqrt {a} \sqrt {a^2 x^3+b x}}-\frac {2 \sqrt [4]{-b} \sqrt {x} \sqrt {\frac {a^2 x^2}{b}+1} \Pi \left (-\frac {\sqrt {-b}}{\left (\sqrt {b-1}+\sqrt {b}\right ) \sqrt {b}};\left .\text {ArcSin}\left (\frac {\sqrt {a} \sqrt {x}}{\sqrt [4]{-b}}\right )\right |-1\right )}{\sqrt {a} \sqrt {a^2 x^3+b x}}+\frac {\sqrt {x} \left (a x+\sqrt {b}\right ) \sqrt {\frac {a^2 x^2+b}{\left (a x+\sqrt {b}\right )^2}} F\left (2 \text {ArcTan}\left (\frac {\sqrt {a} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt {a} \sqrt [4]{b} \sqrt {a^2 x^3+b x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-b + a^2*x^2)/((b + 2*a*b*x + a^2*x^2)*Sqrt[b*x + a^2*x^3]),x]

[Out]

(Sqrt[x]*(Sqrt[b] + a*x)*Sqrt[(b + a^2*x^2)/(Sqrt[b] + a*x)^2]*EllipticF[2*ArcTan[(Sqrt[a]*Sqrt[x])/b^(1/4)],
1/2])/(Sqrt[a]*b^(1/4)*Sqrt[b*x + a^2*x^3]) - (2*(-b)^(1/4)*Sqrt[x]*Sqrt[1 + (a^2*x^2)/b]*EllipticPi[Sqrt[-b]/
((Sqrt[-1 + b] - Sqrt[b])*Sqrt[b]), ArcSin[(Sqrt[a]*Sqrt[x])/(-b)^(1/4)], -1])/(Sqrt[a]*Sqrt[b*x + a^2*x^3]) -
 (2*(-b)^(1/4)*Sqrt[x]*Sqrt[1 + (a^2*x^2)/b]*EllipticPi[-(Sqrt[-b]/((Sqrt[-1 + b] + Sqrt[b])*Sqrt[b])), ArcSin
[(Sqrt[a]*Sqrt[x])/(-b)^(1/4)], -1])/(Sqrt[a]*Sqrt[b*x + a^2*x^3])

Rule 174

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + f*(x^2/d), x]]*Sqrt[Simp[(d
*g - c*h)/d + h*(x^2/d), x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 551

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1/(a*Sqr
t[c]*Sqrt[e]*Rt[-d/c, 2]))*EllipticPi[b*(c/(a*d)), ArcSin[Rt[-d/c, 2]*x], c*(f/(d*e))], x] /; FreeQ[{a, b, c,
d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-f/e, -d/c])

Rule 947

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-c/
a, 2]}, Dist[Sqrt[1 + c*(x^2/a)]/Sqrt[a + c*x^2], Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[1 - q*x]*Sqrt[1 + q*x]),
 x], x]] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0] &&  !GtQ[a, 0]

Rule 2081

Int[(u_.)*(P_)^(p_.), x_Symbol] :> With[{m = MinimumMonomialExponent[P, x]}, Dist[P^FracPart[p]/(x^(m*FracPart
[p])*Distrib[1/x^m, P]^FracPart[p]), Int[u*x^(m*p)*Distrib[1/x^m, P]^p, x], x]] /; FreeQ[p, x] &&  !IntegerQ[p
] && SumQ[P] && EveryQ[BinomialQ[#1, x] & , P] &&  !PolyQ[P, x, 2]

Rule 6860

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {-b+a^2 x^2}{\left (b+2 a b x+a^2 x^2\right ) \sqrt {b x+a^2 x^3}} \, dx &=\frac {\left (\sqrt {x} \sqrt {b+a^2 x^2}\right ) \int \frac {-b+a^2 x^2}{\sqrt {x} \sqrt {b+a^2 x^2} \left (b+2 a b x+a^2 x^2\right )} \, dx}{\sqrt {b x+a^2 x^3}}\\ &=\frac {\left (\sqrt {x} \sqrt {b+a^2 x^2}\right ) \int \left (\frac {1}{\sqrt {x} \sqrt {b+a^2 x^2}}-\frac {2 (b+a b x)}{\sqrt {x} \sqrt {b+a^2 x^2} \left (b+2 a b x+a^2 x^2\right )}\right ) \, dx}{\sqrt {b x+a^2 x^3}}\\ &=\frac {\left (\sqrt {x} \sqrt {b+a^2 x^2}\right ) \int \frac {1}{\sqrt {x} \sqrt {b+a^2 x^2}} \, dx}{\sqrt {b x+a^2 x^3}}-\frac {\left (2 \sqrt {x} \sqrt {b+a^2 x^2}\right ) \int \frac {b+a b x}{\sqrt {x} \sqrt {b+a^2 x^2} \left (b+2 a b x+a^2 x^2\right )} \, dx}{\sqrt {b x+a^2 x^3}}\\ &=-\frac {\left (2 \sqrt {x} \sqrt {b+a^2 x^2}\right ) \int \left (\frac {-a \sqrt {-1+b} \sqrt {b}+a b}{\sqrt {x} \left (-2 a \sqrt {-1+b} \sqrt {b}+2 a b+2 a^2 x\right ) \sqrt {b+a^2 x^2}}+\frac {a \sqrt {-1+b} \sqrt {b}+a b}{\sqrt {x} \left (2 a \sqrt {-1+b} \sqrt {b}+2 a b+2 a^2 x\right ) \sqrt {b+a^2 x^2}}\right ) \, dx}{\sqrt {b x+a^2 x^3}}+\frac {\left (2 \sqrt {x} \sqrt {b+a^2 x^2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {b+a^2 x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {b x+a^2 x^3}}\\ &=\frac {\sqrt {x} \left (\sqrt {b}+a x\right ) \sqrt {\frac {b+a^2 x^2}{\left (\sqrt {b}+a x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt {a} \sqrt [4]{b} \sqrt {b x+a^2 x^3}}+\frac {\left (2 a \left (\sqrt {-1+b}-\sqrt {b}\right ) \sqrt {b} \sqrt {x} \sqrt {b+a^2 x^2}\right ) \int \frac {1}{\sqrt {x} \left (-2 a \sqrt {-1+b} \sqrt {b}+2 a b+2 a^2 x\right ) \sqrt {b+a^2 x^2}} \, dx}{\sqrt {b x+a^2 x^3}}-\frac {\left (2 a \left (\sqrt {-1+b}+\sqrt {b}\right ) \sqrt {b} \sqrt {x} \sqrt {b+a^2 x^2}\right ) \int \frac {1}{\sqrt {x} \left (2 a \sqrt {-1+b} \sqrt {b}+2 a b+2 a^2 x\right ) \sqrt {b+a^2 x^2}} \, dx}{\sqrt {b x+a^2 x^3}}\\ &=\frac {\sqrt {x} \left (\sqrt {b}+a x\right ) \sqrt {\frac {b+a^2 x^2}{\left (\sqrt {b}+a x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt {a} \sqrt [4]{b} \sqrt {b x+a^2 x^3}}+\frac {\left (2 a \left (\sqrt {-1+b}-\sqrt {b}\right ) \sqrt {b} \sqrt {x} \sqrt {1+\frac {a^2 x^2}{b}}\right ) \int \frac {1}{\sqrt {x} \left (-2 a \sqrt {-1+b} \sqrt {b}+2 a b+2 a^2 x\right ) \sqrt {1-\frac {a x}{\sqrt {-b}}} \sqrt {1+\frac {a x}{\sqrt {-b}}}} \, dx}{\sqrt {b x+a^2 x^3}}-\frac {\left (2 a \left (\sqrt {-1+b}+\sqrt {b}\right ) \sqrt {b} \sqrt {x} \sqrt {1+\frac {a^2 x^2}{b}}\right ) \int \frac {1}{\sqrt {x} \left (2 a \sqrt {-1+b} \sqrt {b}+2 a b+2 a^2 x\right ) \sqrt {1-\frac {a x}{\sqrt {-b}}} \sqrt {1+\frac {a x}{\sqrt {-b}}}} \, dx}{\sqrt {b x+a^2 x^3}}\\ &=\frac {\sqrt {x} \left (\sqrt {b}+a x\right ) \sqrt {\frac {b+a^2 x^2}{\left (\sqrt {b}+a x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt {a} \sqrt [4]{b} \sqrt {b x+a^2 x^3}}-\frac {\left (4 a \left (\sqrt {-1+b}-\sqrt {b}\right ) \sqrt {b} \sqrt {x} \sqrt {1+\frac {a^2 x^2}{b}}\right ) \text {Subst}\left (\int \frac {1}{\left (2 a \left (\sqrt {-1+b}-\sqrt {b}\right ) \sqrt {b}-2 a^2 x^2\right ) \sqrt {1-\frac {a x^2}{\sqrt {-b}}} \sqrt {1+\frac {a x^2}{\sqrt {-b}}}} \, dx,x,\sqrt {x}\right )}{\sqrt {b x+a^2 x^3}}+\frac {\left (4 a \left (\sqrt {-1+b}+\sqrt {b}\right ) \sqrt {b} \sqrt {x} \sqrt {1+\frac {a^2 x^2}{b}}\right ) \text {Subst}\left (\int \frac {1}{\left (-2 a \left (\sqrt {-1+b}+\sqrt {b}\right ) \sqrt {b}-2 a^2 x^2\right ) \sqrt {1-\frac {a x^2}{\sqrt {-b}}} \sqrt {1+\frac {a x^2}{\sqrt {-b}}}} \, dx,x,\sqrt {x}\right )}{\sqrt {b x+a^2 x^3}}\\ &=\frac {\sqrt {x} \left (\sqrt {b}+a x\right ) \sqrt {\frac {b+a^2 x^2}{\left (\sqrt {b}+a x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt {a} \sqrt [4]{b} \sqrt {b x+a^2 x^3}}-\frac {2 \sqrt [4]{-b} \sqrt {x} \sqrt {1+\frac {a^2 x^2}{b}} \Pi \left (\frac {\sqrt {-b}}{\left (\sqrt {-1+b}-\sqrt {b}\right ) \sqrt {b}};\left .\sin ^{-1}\left (\frac {\sqrt {a} \sqrt {x}}{\sqrt [4]{-b}}\right )\right |-1\right )}{\sqrt {a} \sqrt {b x+a^2 x^3}}-\frac {2 \sqrt [4]{-b} \sqrt {x} \sqrt {1+\frac {a^2 x^2}{b}} \Pi \left (-\frac {\sqrt {-b}}{\left (\sqrt {-1+b}+\sqrt {b}\right ) \sqrt {b}};\left .\sin ^{-1}\left (\frac {\sqrt {a} \sqrt {x}}{\sqrt [4]{-b}}\right )\right |-1\right )}{\sqrt {a} \sqrt {b x+a^2 x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.85, size = 85, normalized size = 1.42 \begin {gather*} -\frac {\sqrt {2} \sqrt {x} \sqrt {b+a^2 x^2} \text {ArcTan}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {b} \sqrt {x}}{\sqrt {b+a^2 x^2}}\right )}{\sqrt {a} \sqrt {b} \sqrt {x \left (b+a^2 x^2\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-b + a^2*x^2)/((b + 2*a*b*x + a^2*x^2)*Sqrt[b*x + a^2*x^3]),x]

[Out]

-((Sqrt[2]*Sqrt[x]*Sqrt[b + a^2*x^2]*ArcTan[(Sqrt[2]*Sqrt[a]*Sqrt[b]*Sqrt[x])/Sqrt[b + a^2*x^2]])/(Sqrt[a]*Sqr
t[b]*Sqrt[x*(b + a^2*x^2)]))

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 1.00, size = 1096, normalized size = 18.27 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2*x^2-b)/(a^2*x^2+2*a*b*x+b)/(a^2*x^3+b*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(-b)^(1/2)/a*((x+(-b)^(1/2)/a)/(-b)^(1/2)*a)^(1/2)*(-2*(x-(-b)^(1/2)/a)/(-b)^(1/2)*a)^(1/2)*(-x/(-b)^(1/2)*a)^
(1/2)/(a^2*x^3+b*x)^(1/2)*EllipticF(((x+(-b)^(1/2)/a)/(-b)^(1/2)*a)^(1/2),1/2*2^(1/2))-2*b*(-1/2/a^2/(b^2-b)^(
1/2)*(-b)^(1/2)*(x/(-b)^(1/2)*a+1)^(1/2)*(-2*x/(-b)^(1/2)*a+2)^(1/2)*(-x/(-b)^(1/2)*a)^(1/2)/(a^2*x^3+b*x)^(1/
2)/(-(-b)^(1/2)/a+b/a-1/a*(b^2-b)^(1/2))*EllipticPi(((x+(-b)^(1/2)/a)/(-b)^(1/2)*a)^(1/2),-(-b)^(1/2)/a/(-(-b)
^(1/2)/a-(-b+(b^2-b)^(1/2))/a),1/2*2^(1/2))*b+1/2/a^2*(-b)^(1/2)*(x/(-b)^(1/2)*a+1)^(1/2)*(-2*x/(-b)^(1/2)*a+2
)^(1/2)*(-x/(-b)^(1/2)*a)^(1/2)/(a^2*x^3+b*x)^(1/2)/(-(-b)^(1/2)/a+b/a-1/a*(b^2-b)^(1/2))*EllipticPi(((x+(-b)^
(1/2)/a)/(-b)^(1/2)*a)^(1/2),-(-b)^(1/2)/a/(-(-b)^(1/2)/a-(-b+(b^2-b)^(1/2))/a),1/2*2^(1/2))+1/2/a^2/(b^2-b)^(
1/2)*(-b)^(1/2)*(x/(-b)^(1/2)*a+1)^(1/2)*(-2*x/(-b)^(1/2)*a+2)^(1/2)*(-x/(-b)^(1/2)*a)^(1/2)/(a^2*x^3+b*x)^(1/
2)/(-(-b)^(1/2)/a+b/a-1/a*(b^2-b)^(1/2))*EllipticPi(((x+(-b)^(1/2)/a)/(-b)^(1/2)*a)^(1/2),-(-b)^(1/2)/a/(-(-b)
^(1/2)/a-(-b+(b^2-b)^(1/2))/a),1/2*2^(1/2))+1/2/a^2/(b^2-b)^(1/2)*(-b)^(1/2)*(x/(-b)^(1/2)*a+1)^(1/2)*(-2*x/(-
b)^(1/2)*a+2)^(1/2)*(-x/(-b)^(1/2)*a)^(1/2)/(a^2*x^3+b*x)^(1/2)/(-(-b)^(1/2)/a+b/a+1/a*(b^2-b)^(1/2))*Elliptic
Pi(((x+(-b)^(1/2)/a)/(-b)^(1/2)*a)^(1/2),-(-b)^(1/2)/a/(-(-b)^(1/2)/a-(-b-(b^2-b)^(1/2))/a),1/2*2^(1/2))*b+1/2
/a^2*(-b)^(1/2)*(x/(-b)^(1/2)*a+1)^(1/2)*(-2*x/(-b)^(1/2)*a+2)^(1/2)*(-x/(-b)^(1/2)*a)^(1/2)/(a^2*x^3+b*x)^(1/
2)/(-(-b)^(1/2)/a+b/a+1/a*(b^2-b)^(1/2))*EllipticPi(((x+(-b)^(1/2)/a)/(-b)^(1/2)*a)^(1/2),-(-b)^(1/2)/a/(-(-b)
^(1/2)/a-(-b-(b^2-b)^(1/2))/a),1/2*2^(1/2))-1/2/a^2/(b^2-b)^(1/2)*(-b)^(1/2)*(x/(-b)^(1/2)*a+1)^(1/2)*(-2*x/(-
b)^(1/2)*a+2)^(1/2)*(-x/(-b)^(1/2)*a)^(1/2)/(a^2*x^3+b*x)^(1/2)/(-(-b)^(1/2)/a+b/a+1/a*(b^2-b)^(1/2))*Elliptic
Pi(((x+(-b)^(1/2)/a)/(-b)^(1/2)*a)^(1/2),-(-b)^(1/2)/a/(-(-b)^(1/2)/a-(-b-(b^2-b)^(1/2))/a),1/2*2^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*x^2-b)/(a^2*x^2+2*a*b*x+b)/(a^2*x^3+b*x)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b-1>0)', see `assume?` for mor
e details)Is

________________________________________________________________________________________

Fricas [A]
time = 0.45, size = 219, normalized size = 3.65 \begin {gather*} \left [\frac {1}{4} \, \sqrt {2} \sqrt {-\frac {1}{a b}} \log \left (\frac {a^{4} x^{4} - 12 \, a^{3} b x^{3} - 12 \, a b^{2} x + 2 \, {\left (2 \, a^{2} b^{2} + a^{2} b\right )} x^{2} + 4 \, \sqrt {2} {\left (a^{3} b x^{2} - 2 \, a^{2} b^{2} x + a b^{2}\right )} \sqrt {a^{2} x^{3} + b x} \sqrt {-\frac {1}{a b}} + b^{2}}{a^{4} x^{4} + 4 \, a^{3} b x^{3} + 4 \, a b^{2} x + 2 \, {\left (2 \, a^{2} b^{2} + a^{2} b\right )} x^{2} + b^{2}}\right ), \frac {1}{2} \, \sqrt {2} \sqrt {\frac {1}{a b}} \arctan \left (\frac {\sqrt {2} {\left (a^{2} x^{2} - 2 \, a b x + b\right )} \sqrt {\frac {1}{a b}}}{4 \, \sqrt {a^{2} x^{3} + b x}}\right )\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*x^2-b)/(a^2*x^2+2*a*b*x+b)/(a^2*x^3+b*x)^(1/2),x, algorithm="fricas")

[Out]

[1/4*sqrt(2)*sqrt(-1/(a*b))*log((a^4*x^4 - 12*a^3*b*x^3 - 12*a*b^2*x + 2*(2*a^2*b^2 + a^2*b)*x^2 + 4*sqrt(2)*(
a^3*b*x^2 - 2*a^2*b^2*x + a*b^2)*sqrt(a^2*x^3 + b*x)*sqrt(-1/(a*b)) + b^2)/(a^4*x^4 + 4*a^3*b*x^3 + 4*a*b^2*x
+ 2*(2*a^2*b^2 + a^2*b)*x^2 + b^2)), 1/2*sqrt(2)*sqrt(1/(a*b))*arctan(1/4*sqrt(2)*(a^2*x^2 - 2*a*b*x + b)*sqrt
(1/(a*b))/sqrt(a^2*x^3 + b*x))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a^{2} x^{2} - b}{\sqrt {x \left (a^{2} x^{2} + b\right )} \left (a^{2} x^{2} + 2 a b x + b\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a**2*x**2-b)/(a**2*x**2+2*a*b*x+b)/(a**2*x**3+b*x)**(1/2),x)

[Out]

Integral((a**2*x**2 - b)/(sqrt(x*(a**2*x**2 + b))*(a**2*x**2 + 2*a*b*x + b)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*x^2-b)/(a^2*x^2+2*a*b*x+b)/(a^2*x^3+b*x)^(1/2),x, algorithm="giac")

[Out]

integrate((a^2*x^2 - b)/(sqrt(a^2*x^3 + b*x)*(a^2*x^2 + 2*a*b*x + b)), x)

________________________________________________________________________________________

Mupad [B]
time = 3.28, size = 78, normalized size = 1.30 \begin {gather*} \frac {\sqrt {2}\,\ln \left (\frac {\frac {\sqrt {2}\,b}{4}+\frac {\sqrt {2}\,a^2\,x^2}{4}-\frac {\sqrt {2}\,a\,b\,x}{2}+\sqrt {a}\,\sqrt {b}\,\sqrt {a^2\,x^3+b\,x}\,1{}\mathrm {i}}{a^2\,x^2+2\,b\,a\,x+b}\right )\,1{}\mathrm {i}}{2\,\sqrt {a}\,\sqrt {b}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(b - a^2*x^2)/((b*x + a^2*x^3)^(1/2)*(b + a^2*x^2 + 2*a*b*x)),x)

[Out]

(2^(1/2)*log(((2^(1/2)*b)/4 + (2^(1/2)*a^2*x^2)/4 + a^(1/2)*b^(1/2)*(b*x + a^2*x^3)^(1/2)*1i - (2^(1/2)*a*b*x)
/2)/(b + a^2*x^2 + 2*a*b*x))*1i)/(2*a^(1/2)*b^(1/2))

________________________________________________________________________________________