3.1.41 \(\int \frac {e^{-e^2-e^3-\frac {1}{4} e^{-e^2-e^3} x} (4 e^{e^2+e^3}+(-4 e^{e^2+e^3}-x) \log (5 x))}{4 x^2} \, dx\) [41]

Optimal. Leaf size=28 \[ \frac {e^{-\frac {1}{4} e^{-e^2-e^3} x} \log (5 x)}{x} \]

[Out]

ln(5*x)/exp(1/4*x/exp(exp(3)+exp(2)))/x

________________________________________________________________________________________

Rubi [A]
time = 0.93, antiderivative size = 25, normalized size of antiderivative = 0.89, number of steps used = 9, number of rules used = 6, integrand size = 70, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {12, 6874, 2208, 2209, 2228, 2634} \begin {gather*} \frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x} \log (5 x)}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^(-E^2 - E^3 - (E^(-E^2 - E^3)*x)/4)*(4*E^(E^2 + E^3) + (-4*E^(E^2 + E^3) - x)*Log[5*x]))/(4*x^2),x]

[Out]

Log[5*x]/(E^(x/(4*E^(E^2*(1 + E))))*x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2208

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(c + d*x)^(m
+ 1)*((b*F^(g*(e + f*x)))^n/(d*(m + 1))), x] - Dist[f*g*n*(Log[F]/(d*(m + 1))), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] &&  !TrueQ[$UseGamm
a]

Rule 2209

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - c*(f/d)))/d)*ExpInteg
ralEi[f*g*(c + d*x)*(Log[F]/d)], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2228

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> With[{b = Coefficient[v, x, 1], d = Coefficient[u, x, 0],
e = Coefficient[u, x, 1], f = Coefficient[w, x, 0], g = Coefficient[w, x, 1]}, Simp[g*u^(m + 1)*(F^(c*v)/(b*c*
e*Log[F])), x] /; EqQ[e*g*(m + 1) - b*c*(e*f - d*g)*Log[F], 0]] /; FreeQ[{F, c, m}, x] && LinearQ[{u, v, w}, x
]

Rule 2634

Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[w*(D[u, x]
/u), x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {e^{-e^2-e^3-\frac {1}{4} e^{-e^2-e^3} x} \left (4 e^{e^2+e^3}+\left (-4 e^{e^2+e^3}-x\right ) \log (5 x)\right )}{x^2} \, dx\\ &=\frac {1}{4} \int \left (\frac {4 e^{-\frac {1}{4} e^{-e^2-e^3} x}}{x^2}-\frac {e^{-e^2-e^3-\frac {1}{4} e^{-e^2-e^3} x} \left (4 e^{e^2+e^3}+x\right ) \log (5 x)}{x^2}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^{-e^2-e^3-\frac {1}{4} e^{-e^2-e^3} x} \left (4 e^{e^2+e^3}+x\right ) \log (5 x)}{x^2} \, dx\right )+\int \frac {e^{-\frac {1}{4} e^{-e^2-e^3} x}}{x^2} \, dx\\ &=-\frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x}}{x}+\frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x} \log (5 x)}{x}+\frac {1}{4} \int -\frac {4 e^{-\frac {1}{4} e^{-e^2 (1+e)} x}}{x^2} \, dx-\frac {1}{4} e^{-e^2 (1+e)} \int \frac {e^{-\frac {1}{4} e^{-e^2-e^3} x}}{x} \, dx\\ &=-\frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x}}{x}-\frac {1}{4} e^{-e^2 (1+e)} \text {Ei}\left (-\frac {1}{4} e^{-e^2 (1+e)} x\right )+\frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x} \log (5 x)}{x}-\int \frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x}}{x^2} \, dx\\ &=-\frac {1}{4} e^{-e^2 (1+e)} \text {Ei}\left (-\frac {1}{4} e^{-e^2 (1+e)} x\right )+\frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x} \log (5 x)}{x}+\frac {1}{4} e^{-e^2 (1+e)} \int \frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x}}{x} \, dx\\ &=\frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x} \log (5 x)}{x}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]
time = 0.16, size = 25, normalized size = 0.89 \begin {gather*} \frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x} \log (5 x)}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^(-E^2 - E^3 - (E^(-E^2 - E^3)*x)/4)*(4*E^(E^2 + E^3) + (-4*E^(E^2 + E^3) - x)*Log[5*x]))/(4*x^2),
x]

[Out]

Log[5*x]/(E^(x/(4*E^(E^2*(1 + E))))*x)

________________________________________________________________________________________

Maple [A]
time = 0.17, size = 23, normalized size = 0.82

method result size
norman \(\frac {{\mathrm e}^{-\frac {x \,{\mathrm e}^{-{\mathrm e}^{3}-{\mathrm e}^{2}}}{4}} \ln \left (5 x \right )}{x}\) \(23\)
risch \(\frac {{\mathrm e}^{-\frac {x \,{\mathrm e}^{-{\mathrm e}^{3}-{\mathrm e}^{2}}}{4}} \ln \left (5 x \right )}{x}\) \(23\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/4*((-4*exp(exp(3)+exp(2))-x)*ln(5*x)+4*exp(exp(3)+exp(2)))/x^2/exp(exp(3)+exp(2))/exp(1/4*x/exp(exp(3)+e
xp(2))),x,method=_RETURNVERBOSE)

[Out]

ln(5*x)/exp(1/4*x/exp(exp(3)+exp(2)))/x

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((-4*exp(exp(3)+exp(2))-x)*log(5*x)+4*exp(exp(3)+exp(2)))/x^2/exp(exp(3)+exp(2))/exp(1/4*x/exp(e
xp(3)+exp(2))),x, algorithm="maxima")

[Out]

-1/4*e^(-e^3 - e^2)*gamma(-1, 1/4*x*e^(-e^3 - e^2)) + e^(-1/4*x*e^(-e^3 - e^2))*log(x)/x - 1/4*integrate((4*(l
og(5) + 1)*e^(e^3 + e^2) + x*log(5))*e^(-1/4*x*e^(-e^3 - e^2) - e^3 - e^2)/x^2, x)

________________________________________________________________________________________

Fricas [A]
time = 0.38, size = 41, normalized size = 1.46 \begin {gather*} \frac {e^{\left (-\frac {1}{4} \, {\left (4 \, {\left (e^{3} + e^{2}\right )} e^{\left (e^{3} + e^{2}\right )} + x\right )} e^{\left (-e^{3} - e^{2}\right )} + e^{3} + e^{2}\right )} \log \left (5 \, x\right )}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((-4*exp(exp(3)+exp(2))-x)*log(5*x)+4*exp(exp(3)+exp(2)))/x^2/exp(exp(3)+exp(2))/exp(1/4*x/exp(e
xp(3)+exp(2))),x, algorithm="fricas")

[Out]

e^(-1/4*(4*(e^3 + e^2)*e^(e^3 + e^2) + x)*e^(-e^3 - e^2) + e^3 + e^2)*log(5*x)/x

________________________________________________________________________________________

Sympy [A]
time = 0.09, size = 19, normalized size = 0.68 \begin {gather*} \frac {e^{- \frac {x}{4 e^{e^{2} + e^{3}}}} \log {\left (5 x \right )}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((-4*exp(exp(3)+exp(2))-x)*ln(5*x)+4*exp(exp(3)+exp(2)))/x**2/exp(exp(3)+exp(2))/exp(1/4*x/exp(e
xp(3)+exp(2))),x)

[Out]

exp(-x*exp(-exp(3) - exp(2))/4)*log(5*x)/x

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((-4*exp(exp(3)+exp(2))-x)*log(5*x)+4*exp(exp(3)+exp(2)))/x^2/exp(exp(3)+exp(2))/exp(1/4*x/exp(e
xp(3)+exp(2))),x, algorithm="giac")

[Out]

integrate(-1/4*((x + 4*e^(e^3 + e^2))*log(5*x) - 4*e^(e^3 + e^2))*e^(-1/4*x*e^(-e^3 - e^2) - e^3 - e^2)/x^2, x
)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{-{\mathrm {e}}^2-{\mathrm {e}}^3}\,{\mathrm {e}}^{-\frac {x\,{\mathrm {e}}^{-{\mathrm {e}}^2-{\mathrm {e}}^3}}{4}}\,\left ({\mathrm {e}}^{{\mathrm {e}}^2+{\mathrm {e}}^3}-\frac {\ln \left (5\,x\right )\,\left (x+4\,{\mathrm {e}}^{{\mathrm {e}}^2+{\mathrm {e}}^3}\right )}{4}\right )}{x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(- exp(2) - exp(3))*exp(-(x*exp(- exp(2) - exp(3)))/4)*(exp(exp(2) + exp(3)) - (log(5*x)*(x + 4*exp(ex
p(2) + exp(3))))/4))/x^2,x)

[Out]

int((exp(- exp(2) - exp(3))*exp(-(x*exp(- exp(2) - exp(3)))/4)*(exp(exp(2) + exp(3)) - (log(5*x)*(x + 4*exp(ex
p(2) + exp(3))))/4))/x^2, x)

________________________________________________________________________________________