3.34.70 \(\int \frac {e^{8-x} (e^4 (-3-x)-x^2-x^3+(-2 x-x^2) \log (2))}{5 x^4} \, dx\) [3370]

Optimal. Leaf size=25 \[ \frac {e^{8-x} \left (\frac {e^4}{x}+x+\log (2)\right )}{5 x^2} \]

[Out]

1/5*exp(8-x)/x^2*(exp(4)/x+ln(2)+x)

________________________________________________________________________________________

Rubi [C] Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.
time = 0.28, antiderivative size = 155, normalized size of antiderivative = 6.20, number of steps used = 13, number of rules used = 4, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {12, 2230, 2208, 2209} \begin {gather*} \frac {1}{10} e^{12} \text {ExpIntegralEi}(-x)-\frac {1}{5} e^8 \text {ExpIntegralEi}(-x)-\frac {1}{10} e^8 \left (e^4+\log (4)\right ) \text {ExpIntegralEi}(-x)+\frac {1}{5} e^8 (1+\log (2)) \text {ExpIntegralEi}(-x)+\frac {e^{12-x}}{5 x^3}-\frac {e^{12-x}}{10 x^2}+\frac {e^{8-x} \left (e^4+\log (4)\right )}{10 x^2}+\frac {e^{12-x}}{10 x}-\frac {e^{8-x} \left (e^4+\log (4)\right )}{10 x}+\frac {e^{8-x} (1+\log (2))}{5 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^(8 - x)*(E^4*(-3 - x) - x^2 - x^3 + (-2*x - x^2)*Log[2]))/(5*x^4),x]

[Out]

E^(12 - x)/(5*x^3) - E^(12 - x)/(10*x^2) + E^(12 - x)/(10*x) - (E^8*ExpIntegralEi[-x])/5 + (E^12*ExpIntegralEi
[-x])/10 + (E^(8 - x)*(1 + Log[2]))/(5*x) + (E^8*ExpIntegralEi[-x]*(1 + Log[2]))/5 + (E^(8 - x)*(E^4 + Log[4])
)/(10*x^2) - (E^(8 - x)*(E^4 + Log[4]))/(10*x) - (E^8*ExpIntegralEi[-x]*(E^4 + Log[4]))/10

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2208

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(c + d*x)^(m
+ 1)*((b*F^(g*(e + f*x)))^n/(d*(m + 1))), x] - Dist[f*g*n*(Log[F]/(d*(m + 1))), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] &&  !TrueQ[$UseGamm
a]

Rule 2209

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - c*(f/d)))/d)*ExpInteg
ralEi[f*g*(c + d*x)*(Log[F]/d)], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2230

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] &&  !TrueQ[$UseGamma]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{8-x} \left (e^4 (-3-x)-x^2-x^3+\left (-2 x-x^2\right ) \log (2)\right )}{x^4} \, dx\\ &=\frac {1}{5} \int \left (-\frac {3 e^{12-x}}{x^4}-\frac {e^{8-x}}{x}+\frac {e^{8-x} (-1-\log (2))}{x^2}+\frac {e^{8-x} \left (-e^4-\log (4)\right )}{x^3}\right ) \, dx\\ &=-\left (\frac {1}{5} \int \frac {e^{8-x}}{x} \, dx\right )-\frac {3}{5} \int \frac {e^{12-x}}{x^4} \, dx+\frac {1}{5} (-1-\log (2)) \int \frac {e^{8-x}}{x^2} \, dx+\frac {1}{5} \left (-e^4-\log (4)\right ) \int \frac {e^{8-x}}{x^3} \, dx\\ &=\frac {e^{12-x}}{5 x^3}-\frac {e^8 \text {Ei}(-x)}{5}+\frac {e^{8-x} (1+\log (2))}{5 x}+\frac {e^{8-x} \left (e^4+\log (4)\right )}{10 x^2}+\frac {1}{5} \int \frac {e^{12-x}}{x^3} \, dx+\frac {1}{5} (1+\log (2)) \int \frac {e^{8-x}}{x} \, dx+\frac {1}{10} \left (e^4+\log (4)\right ) \int \frac {e^{8-x}}{x^2} \, dx\\ &=\frac {e^{12-x}}{5 x^3}-\frac {e^{12-x}}{10 x^2}-\frac {e^8 \text {Ei}(-x)}{5}+\frac {e^{8-x} (1+\log (2))}{5 x}+\frac {1}{5} e^8 \text {Ei}(-x) (1+\log (2))+\frac {e^{8-x} \left (e^4+\log (4)\right )}{10 x^2}-\frac {e^{8-x} \left (e^4+\log (4)\right )}{10 x}-\frac {1}{10} \int \frac {e^{12-x}}{x^2} \, dx+\frac {1}{10} \left (-e^4-\log (4)\right ) \int \frac {e^{8-x}}{x} \, dx\\ &=\frac {e^{12-x}}{5 x^3}-\frac {e^{12-x}}{10 x^2}+\frac {e^{12-x}}{10 x}-\frac {e^8 \text {Ei}(-x)}{5}+\frac {e^{8-x} (1+\log (2))}{5 x}+\frac {1}{5} e^8 \text {Ei}(-x) (1+\log (2))+\frac {e^{8-x} \left (e^4+\log (4)\right )}{10 x^2}-\frac {e^{8-x} \left (e^4+\log (4)\right )}{10 x}-\frac {1}{10} e^8 \text {Ei}(-x) \left (e^4+\log (4)\right )+\frac {1}{10} \int \frac {e^{12-x}}{x} \, dx\\ &=\frac {e^{12-x}}{5 x^3}-\frac {e^{12-x}}{10 x^2}+\frac {e^{12-x}}{10 x}-\frac {e^8 \text {Ei}(-x)}{5}+\frac {e^{12} \text {Ei}(-x)}{10}+\frac {e^{8-x} (1+\log (2))}{5 x}+\frac {1}{5} e^8 \text {Ei}(-x) (1+\log (2))+\frac {e^{8-x} \left (e^4+\log (4)\right )}{10 x^2}-\frac {e^{8-x} \left (e^4+\log (4)\right )}{10 x}-\frac {1}{10} e^8 \text {Ei}(-x) \left (e^4+\log (4)\right )\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 28, normalized size = 1.12 \begin {gather*} \frac {e^{8-x} \left (2 e^4+x (2 x+\log (4))\right )}{10 x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^(8 - x)*(E^4*(-3 - x) - x^2 - x^3 + (-2*x - x^2)*Log[2]))/(5*x^4),x]

[Out]

(E^(8 - x)*(2*E^4 + x*(2*x + Log[4])))/(10*x^3)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 1.37, size = 116, normalized size = 4.64

method result size
gosper \(\frac {{\mathrm e}^{8-x} \left (x \ln \left (2\right )+x^{2}+{\mathrm e}^{4}\right )}{5 x^{3}}\) \(22\)
risch \(\frac {{\mathrm e}^{8-x} \left (x \ln \left (2\right )+x^{2}+{\mathrm e}^{4}\right )}{5 x^{3}}\) \(22\)
norman \(\frac {\frac {x^{2} {\mathrm e}^{8-x}}{5}+\frac {{\mathrm e}^{4} {\mathrm e}^{8-x}}{5}+\frac {x \ln \left (2\right ) {\mathrm e}^{8-x}}{5}}{x^{3}}\) \(38\)
derivativedivides \(\frac {{\mathrm e}^{8-x}}{5 x}-\frac {{\mathrm e}^{4} \left (-\frac {11 \,{\mathrm e}^{8-x}}{6 x^{2}}+\frac {11 \,{\mathrm e}^{8-x}}{6 x}-\frac {11 \,{\mathrm e}^{8} \expIntegral \left (1, x\right )}{6}+\frac {8 \,{\mathrm e}^{8-x}}{3 x^{3}}\right )}{5}+\frac {11 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{8-x}}{3 x^{3}}-\frac {{\mathrm e}^{8-x}}{6 x^{2}}+\frac {{\mathrm e}^{8-x}}{6 x}-\frac {{\mathrm e}^{8} \expIntegral \left (1, x\right )}{6}\right )}{5}+\frac {\ln \left (2\right ) {\mathrm e}^{8-x}}{5 x^{2}}\) \(116\)
default \(\frac {{\mathrm e}^{8-x}}{5 x}-\frac {{\mathrm e}^{4} \left (-\frac {11 \,{\mathrm e}^{8-x}}{6 x^{2}}+\frac {11 \,{\mathrm e}^{8-x}}{6 x}-\frac {11 \,{\mathrm e}^{8} \expIntegral \left (1, x\right )}{6}+\frac {8 \,{\mathrm e}^{8-x}}{3 x^{3}}\right )}{5}+\frac {11 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{8-x}}{3 x^{3}}-\frac {{\mathrm e}^{8-x}}{6 x^{2}}+\frac {{\mathrm e}^{8-x}}{6 x}-\frac {{\mathrm e}^{8} \expIntegral \left (1, x\right )}{6}\right )}{5}+\frac {\ln \left (2\right ) {\mathrm e}^{8-x}}{5 x^{2}}\) \(116\)
meijerg \(\left (-\frac {\ln \left (2\right )}{5}-\frac {1}{5}\right ) {\mathrm e}^{8} \left (\frac {-2 x +2}{2 x}-\frac {{\mathrm e}^{-x}}{x}+\expIntegral \left (1, x\right )+1-\frac {1}{x}\right )+\left (-\frac {{\mathrm e}^{4}}{5}-\frac {2 \ln \left (2\right )}{5}\right ) {\mathrm e}^{8} \left (\frac {9 x^{2}-12 x +6}{12 x^{2}}-\frac {\left (-3 x +3\right ) {\mathrm e}^{-x}}{6 x^{2}}-\frac {\expIntegral \left (1, x\right )}{2}-\frac {3}{4}-\frac {1}{2 x^{2}}+\frac {1}{x}\right )+\frac {{\mathrm e}^{8} \expIntegral \left (1, x\right )}{5}-\frac {3 \,{\mathrm e}^{12} \left (\frac {-22 x^{3}+36 x^{2}-36 x +24}{72 x^{3}}-\frac {\left (4 x^{2}-4 x +8\right ) {\mathrm e}^{-x}}{24 x^{3}}+\frac {\expIntegral \left (1, x\right )}{6}+\frac {11}{36}-\frac {1}{3 x^{3}}+\frac {1}{2 x^{2}}-\frac {1}{2 x}\right )}{5}\) \(168\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/5*((-x^2-2*x)*ln(2)+(-3-x)*exp(4)-x^3-x^2)*exp(8-x)/x^4,x,method=_RETURNVERBOSE)

[Out]

1/5*exp(8-x)/x-1/5*exp(4)*(-11/6*exp(8-x)/x^2+11/6*exp(8-x)/x-11/6*exp(8)*Ei(1,x)+8/3*exp(8-x)/x^3)+11/5*exp(4
)*(1/3*exp(8-x)/x^3-1/6*exp(8-x)/x^2+1/6*exp(8-x)/x-1/6*exp(8)*Ei(1,x))+1/5*ln(2)*exp(8-x)/x^2

________________________________________________________________________________________

Maxima [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 0.31, size = 48, normalized size = 1.92 \begin {gather*} \frac {1}{5} \, e^{8} \Gamma \left (-1, x\right ) \log \left (2\right ) + \frac {2}{5} \, e^{8} \Gamma \left (-2, x\right ) \log \left (2\right ) - \frac {1}{5} \, {\rm Ei}\left (-x\right ) e^{8} + \frac {1}{5} \, e^{8} \Gamma \left (-1, x\right ) + \frac {1}{5} \, e^{12} \Gamma \left (-2, x\right ) + \frac {3}{5} \, e^{12} \Gamma \left (-3, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*((-x^2-2*x)*log(2)+(-3-x)*exp(4)-x^3-x^2)*exp(8-x)/x^4,x, algorithm="maxima")

[Out]

1/5*e^8*gamma(-1, x)*log(2) + 2/5*e^8*gamma(-2, x)*log(2) - 1/5*Ei(-x)*e^8 + 1/5*e^8*gamma(-1, x) + 1/5*e^12*g
amma(-2, x) + 3/5*e^12*gamma(-3, x)

________________________________________________________________________________________

Fricas [A]
time = 0.44, size = 21, normalized size = 0.84 \begin {gather*} \frac {{\left (x^{2} + x \log \left (2\right ) + e^{4}\right )} e^{\left (-x + 8\right )}}{5 \, x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*((-x^2-2*x)*log(2)+(-3-x)*exp(4)-x^3-x^2)*exp(8-x)/x^4,x, algorithm="fricas")

[Out]

1/5*(x^2 + x*log(2) + e^4)*e^(-x + 8)/x^3

________________________________________________________________________________________

Sympy [A]
time = 0.06, size = 20, normalized size = 0.80 \begin {gather*} \frac {\left (x^{2} + x \log {\left (2 \right )} + e^{4}\right ) e^{8 - x}}{5 x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*((-x**2-2*x)*ln(2)+(-3-x)*exp(4)-x**3-x**2)*exp(8-x)/x**4,x)

[Out]

(x**2 + x*log(2) + exp(4))*exp(8 - x)/(5*x**3)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 81 vs. \(2 (21) = 42\).
time = 0.39, size = 81, normalized size = 3.24 \begin {gather*} \frac {{\left (x - 8\right )}^{2} e^{\left (-x + 8\right )} + {\left (x - 8\right )} e^{\left (-x + 8\right )} \log \left (2\right ) + 16 \, {\left (x - 8\right )} e^{\left (-x + 8\right )} + 8 \, e^{\left (-x + 8\right )} \log \left (2\right ) + e^{\left (-x + 12\right )} + 64 \, e^{\left (-x + 8\right )}}{5 \, {\left ({\left (x - 8\right )}^{3} + 24 \, {\left (x - 8\right )}^{2} + 192 \, x - 1024\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*((-x^2-2*x)*log(2)+(-3-x)*exp(4)-x^3-x^2)*exp(8-x)/x^4,x, algorithm="giac")

[Out]

1/5*((x - 8)^2*e^(-x + 8) + (x - 8)*e^(-x + 8)*log(2) + 16*(x - 8)*e^(-x + 8) + 8*e^(-x + 8)*log(2) + e^(-x +
12) + 64*e^(-x + 8))/((x - 8)^3 + 24*(x - 8)^2 + 192*x - 1024)

________________________________________________________________________________________

Mupad [B]
time = 2.05, size = 36, normalized size = 1.44 \begin {gather*} \frac {{\mathrm {e}}^{-x}\,{\mathrm {e}}^8}{5\,x}+\frac {{\mathrm {e}}^{-x}\,{\mathrm {e}}^{12}}{5\,x^3}+\frac {{\mathrm {e}}^{-x}\,{\mathrm {e}}^8\,\ln \left (2\right )}{5\,x^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(8 - x)*(exp(4)*(x + 3) + x^2 + x^3 + log(2)*(2*x + x^2)))/(5*x^4),x)

[Out]

(exp(-x)*exp(8))/(5*x) + (exp(-x)*exp(12))/(5*x^3) + (exp(-x)*exp(8)*log(2))/(5*x^2)

________________________________________________________________________________________