3.67.78 \(\int \frac {e^{\frac {20+x}{x}} (-40-2 x)}{x^3} \, dx\) [6678]

Optimal. Leaf size=24 \[ \frac {2 \left (e^{\frac {20+x}{x}}+\left (3-e^{32}\right ) x\right )}{x} \]

[Out]

2*((3-exp(32))*x+exp((20+x)/x))/x

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 28, normalized size of antiderivative = 1.17, number of steps used = 1, number of rules used = 1, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {2326} \begin {gather*} -\frac {40 e^{\frac {x+20}{x}}}{x^3 \left (\frac {1}{x}-\frac {x+20}{x^2}\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^((20 + x)/x)*(-40 - 2*x))/x^3,x]

[Out]

(-40*E^((20 + x)/x))/(x^3*(x^(-1) - (20 + x)/x^2))

Rule 2326

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = v*(y/(Log[F]*D[u, x]))}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=-\frac {40 e^{\frac {20+x}{x}}}{x^3 \left (\frac {1}{x}-\frac {20+x}{x^2}\right )}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 14, normalized size = 0.58 \begin {gather*} \frac {2 e^{1+\frac {20}{x}}}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^((20 + x)/x)*(-40 - 2*x))/x^3,x]

[Out]

(2*E^(1 + 20/x))/x

________________________________________________________________________________________

Maple [A]
time = 1.39, size = 29, normalized size = 1.21

method result size
gosper \(\frac {2 \,{\mathrm e}^{\frac {20+x}{x}}}{x}\) \(14\)
norman \(\frac {2 \,{\mathrm e}^{\frac {20+x}{x}}}{x}\) \(14\)
risch \(\frac {2 \,{\mathrm e}^{\frac {20+x}{x}}}{x}\) \(14\)
derivativedivides \(\frac {\left (1+\frac {20}{x}\right ) {\mathrm e}^{1+\frac {20}{x}}}{10}-\frac {{\mathrm e}^{1+\frac {20}{x}}}{10}\) \(29\)
default \(\frac {\left (1+\frac {20}{x}\right ) {\mathrm e}^{1+\frac {20}{x}}}{10}-\frac {{\mathrm e}^{1+\frac {20}{x}}}{10}\) \(29\)
meijerg \(-\frac {{\mathrm e} \left (1-{\mathrm e}^{\frac {20}{x}}\right )}{10}+\frac {{\mathrm e} \left (1-\frac {\left (2-\frac {40}{x}\right ) {\mathrm e}^{\frac {20}{x}}}{2}\right )}{10}\) \(37\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*x-40)*exp((20+x)/x)/x^3,x,method=_RETURNVERBOSE)

[Out]

1/10*(1+20/x)*exp(1+20/x)-1/10*exp(1+20/x)

________________________________________________________________________________________

Maxima [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 0.30, size = 22, normalized size = 0.92 \begin {gather*} -\frac {1}{10} \, e \Gamma \left (2, -\frac {20}{x}\right ) + \frac {1}{10} \, e^{\left (\frac {20}{x} + 1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x-40)*exp((20+x)/x)/x^3,x, algorithm="maxima")

[Out]

-1/10*e*gamma(2, -20/x) + 1/10*e^(20/x + 1)

________________________________________________________________________________________

Fricas [A]
time = 0.39, size = 13, normalized size = 0.54 \begin {gather*} \frac {2 \, e^{\left (\frac {x + 20}{x}\right )}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x-40)*exp((20+x)/x)/x^3,x, algorithm="fricas")

[Out]

2*e^((x + 20)/x)/x

________________________________________________________________________________________

Sympy [A]
time = 0.04, size = 8, normalized size = 0.33 \begin {gather*} \frac {2 e^{\frac {x + 20}{x}}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x-40)*exp((20+x)/x)/x**3,x)

[Out]

2*exp((x + 20)/x)/x

________________________________________________________________________________________

Giac [A]
time = 0.40, size = 27, normalized size = 1.12 \begin {gather*} \frac {{\left (x + 20\right )} e^{\left (\frac {x + 20}{x}\right )}}{10 \, x} - \frac {1}{10} \, e^{\left (\frac {x + 20}{x}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x-40)*exp((20+x)/x)/x^3,x, algorithm="giac")

[Out]

1/10*(x + 20)*e^((x + 20)/x)/x - 1/10*e^((x + 20)/x)

________________________________________________________________________________________

Mupad [B]
time = 4.12, size = 13, normalized size = 0.54 \begin {gather*} \frac {2\,\mathrm {e}\,{\mathrm {e}}^{20/x}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp((x + 20)/x)*(2*x + 40))/x^3,x)

[Out]

(2*exp(1)*exp(20/x))/x

________________________________________________________________________________________