3.8.5 \(\int \frac {9+6 e^4+6 x+(9+6 x) \log (x)}{-3-2 x+(3 x+2 x^2) \log (x)+e^4 (3+2 x) \log (\frac {1}{2} (3+2 x))} \, dx\) [705]

Optimal. Leaf size=21 \[ 3 \left (5+\log \left (-1+x \log (x)+e^4 \log \left (\frac {3}{2}+x\right )\right )\right ) \]

[Out]

3*ln(exp(4)*ln(x+3/2)+x*ln(x)-1)+15

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.035, Rules used = {6873, 6816} \begin {gather*} 3 \log \left (-x \log (x)-e^4 \log \left (x+\frac {3}{2}\right )+1\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(9 + 6*E^4 + 6*x + (9 + 6*x)*Log[x])/(-3 - 2*x + (3*x + 2*x^2)*Log[x] + E^4*(3 + 2*x)*Log[(3 + 2*x)/2]),x]

[Out]

3*Log[1 - x*Log[x] - E^4*Log[3/2 + x]]

Rule 6816

Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /;  !Fa
lseQ[q]]

Rule 6873

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-9 \left (1+\frac {2 e^4}{3}\right )-6 x-(9+6 x) \log (x)}{(3+2 x) \left (1-x \log (x)-e^4 \log \left (\frac {3}{2}+x\right )\right )} \, dx\\ &=3 \log \left (1-x \log (x)-e^4 \log \left (\frac {3}{2}+x\right )\right )\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]
time = 0.07, size = 21, normalized size = 1.00 \begin {gather*} 3 \log \left (1-x \log (x)-e^4 \log \left (\frac {3}{2}+x\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(9 + 6*E^4 + 6*x + (9 + 6*x)*Log[x])/(-3 - 2*x + (3*x + 2*x^2)*Log[x] + E^4*(3 + 2*x)*Log[(3 + 2*x)/
2]),x]

[Out]

3*Log[1 - x*Log[x] - E^4*Log[3/2 + x]]

________________________________________________________________________________________

Maple [A]
time = 1.20, size = 26, normalized size = 1.24

method result size
norman \(3 \ln \left ({\mathrm e}^{4} \ln \left (x +\frac {3}{2}\right )+x \ln \left (x \right )-1\right )\) \(17\)
risch \(3 \ln \left (\ln \left (x +\frac {3}{2}\right )+\left (x \ln \left (x \right )-1\right ) {\mathrm e}^{-4}\right )\) \(18\)
default \(3 \ln \left ({\mathrm e}^{4} \ln \left (2\right )-{\mathrm e}^{4} \ln \left (2 x +3\right )-x \ln \left (x \right )+1\right )\) \(26\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((6*x+9)*ln(x)+6*exp(4)+6*x+9)/((2*x+3)*exp(4)*ln(x+3/2)+(2*x^2+3*x)*ln(x)-2*x-3),x,method=_RETURNVERBOSE)

[Out]

3*ln(exp(4)*ln(2)-exp(4)*ln(2*x+3)-x*ln(x)+1)

________________________________________________________________________________________

Maxima [A]
time = 0.54, size = 29, normalized size = 1.38 \begin {gather*} 3 \, \log \left (-{\left (e^{4} \log \left (2\right ) - e^{4} \log \left (2 \, x + 3\right ) - x \log \left (x\right ) + 1\right )} e^{\left (-4\right )}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((6*x+9)*log(x)+6*exp(4)+6*x+9)/((3+2*x)*exp(4)*log(x+3/2)+(2*x^2+3*x)*log(x)-2*x-3),x, algorithm="m
axima")

[Out]

3*log(-(e^4*log(2) - e^4*log(2*x + 3) - x*log(x) + 1)*e^(-4))

________________________________________________________________________________________

Fricas [A]
time = 0.33, size = 16, normalized size = 0.76 \begin {gather*} 3 \, \log \left (e^{4} \log \left (x + \frac {3}{2}\right ) + x \log \left (x\right ) - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((6*x+9)*log(x)+6*exp(4)+6*x+9)/((3+2*x)*exp(4)*log(x+3/2)+(2*x^2+3*x)*log(x)-2*x-3),x, algorithm="f
ricas")

[Out]

3*log(e^4*log(x + 3/2) + x*log(x) - 1)

________________________________________________________________________________________

Sympy [A]
time = 0.15, size = 19, normalized size = 0.90 \begin {gather*} 3 \log {\left (\frac {x \log {\left (x \right )} - 1}{e^{4}} + \log {\left (x + \frac {3}{2} \right )} \right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((6*x+9)*ln(x)+6*exp(4)+6*x+9)/((3+2*x)*exp(4)*ln(x+3/2)+(2*x**2+3*x)*ln(x)-2*x-3),x)

[Out]

3*log((x*log(x) - 1)*exp(-4) + log(x + 3/2))

________________________________________________________________________________________

Giac [A]
time = 0.41, size = 24, normalized size = 1.14 \begin {gather*} 3 \, \log \left (-e^{4} \log \left (2\right ) + e^{4} \log \left (2 \, x + 3\right ) + x \log \left (x\right ) - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((6*x+9)*log(x)+6*exp(4)+6*x+9)/((3+2*x)*exp(4)*log(x+3/2)+(2*x^2+3*x)*log(x)-2*x-3),x, algorithm="g
iac")

[Out]

3*log(-e^4*log(2) + e^4*log(2*x + 3) + x*log(x) - 1)

________________________________________________________________________________________

Mupad [B]
time = 1.01, size = 16, normalized size = 0.76 \begin {gather*} 3\,\ln \left (\ln \left (x+\frac {3}{2}\right )\,{\mathrm {e}}^4+x\,\ln \left (x\right )-1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(6*x + 6*exp(4) + log(x)*(6*x + 9) + 9)/(2*x - log(x)*(3*x + 2*x^2) - log(x + 3/2)*exp(4)*(2*x + 3) + 3),
x)

[Out]

3*log(log(x + 3/2)*exp(4) + x*log(x) - 1)

________________________________________________________________________________________