3.97.40 \(\int \frac {(-10-20 x-10 \log (x)) \log (2 \log (4))}{3 x^4+6 x^3 \log (x)+3 x^2 \log ^2(x)} \, dx\) [9640]

Optimal. Leaf size=18 \[ \frac {10 \log (2 \log (4))}{3 x (x+\log (x))} \]

[Out]

10/3/(x+ln(x))/x*ln(4*ln(2))

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 16, normalized size of antiderivative = 0.89, number of steps used = 4, number of rules used = 3, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {12, 6820, 6819} \begin {gather*} \frac {10 \log (\log (16))}{3 x (x+\log (x))} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((-10 - 20*x - 10*Log[x])*Log[2*Log[4]])/(3*x^4 + 6*x^3*Log[x] + 3*x^2*Log[x]^2),x]

[Out]

(10*Log[Log[16]])/(3*x*(x + Log[x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6819

Int[(u_)*(y_)^(m_.)*(z_)^(n_.), x_Symbol] :> With[{q = DerivativeDivides[y*z, u*z^(n - m), x]}, Simp[q*y^(m +
1)*(z^(m + 1)/(m + 1)), x] /;  !FalseQ[q]] /; FreeQ[{m, n}, x] && NeQ[m, -1]

Rule 6820

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\log (\log (16)) \int \frac {-10-20 x-10 \log (x)}{3 x^4+6 x^3 \log (x)+3 x^2 \log ^2(x)} \, dx\\ &=\log (\log (16)) \int \frac {10 (-1-2 x-\log (x))}{3 x^2 (x+\log (x))^2} \, dx\\ &=\frac {1}{3} (10 \log (\log (16))) \int \frac {-1-2 x-\log (x)}{x^2 (x+\log (x))^2} \, dx\\ &=\frac {10 \log (\log (16))}{3 x (x+\log (x))}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]
time = 0.04, size = 16, normalized size = 0.89 \begin {gather*} \frac {10 \log (\log (16))}{3 x (x+\log (x))} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((-10 - 20*x - 10*Log[x])*Log[2*Log[4]])/(3*x^4 + 6*x^3*Log[x] + 3*x^2*Log[x]^2),x]

[Out]

(10*Log[Log[16]])/(3*x*(x + Log[x]))

________________________________________________________________________________________

Maple [A]
time = 0.12, size = 17, normalized size = 0.94

method result size
default \(\frac {10 \ln \left (4 \ln \left (2\right )\right )}{3 \left (x +\ln \left (x \right )\right ) x}\) \(17\)
risch \(\frac {\frac {20 \ln \left (2\right )}{3}+\frac {10 \ln \left (\ln \left (2\right )\right )}{3}}{\left (x +\ln \left (x \right )\right ) x}\) \(20\)
norman \(\frac {\frac {20 \ln \left (2\right )}{3}+\frac {10 \ln \left (\ln \left (2\right )\right )}{3}}{\left (x +\ln \left (x \right )\right ) x}\) \(21\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-10*ln(x)-20*x-10)*ln(4*ln(2))/(3*x^2*ln(x)^2+6*x^3*ln(x)+3*x^4),x,method=_RETURNVERBOSE)

[Out]

10/3/(x+ln(x))/x*ln(4*ln(2))

________________________________________________________________________________________

Maxima [A]
time = 0.28, size = 17, normalized size = 0.94 \begin {gather*} \frac {10 \, \log \left (4 \, \log \left (2\right )\right )}{3 \, {\left (x^{2} + x \log \left (x\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-10*log(x)-20*x-10)*log(4*log(2))/(3*x^2*log(x)^2+6*x^3*log(x)+3*x^4),x, algorithm="maxima")

[Out]

10/3*log(4*log(2))/(x^2 + x*log(x))

________________________________________________________________________________________

Fricas [A]
time = 0.38, size = 17, normalized size = 0.94 \begin {gather*} \frac {10 \, \log \left (4 \, \log \left (2\right )\right )}{3 \, {\left (x^{2} + x \log \left (x\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-10*log(x)-20*x-10)*log(4*log(2))/(3*x^2*log(x)^2+6*x^3*log(x)+3*x^4),x, algorithm="fricas")

[Out]

10/3*log(4*log(2))/(x^2 + x*log(x))

________________________________________________________________________________________

Sympy [A]
time = 0.05, size = 22, normalized size = 1.22 \begin {gather*} \frac {10 \log {\left (\log {\left (2 \right )} \right )} + 20 \log {\left (2 \right )}}{3 x^{2} + 3 x \log {\left (x \right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-10*ln(x)-20*x-10)*ln(4*ln(2))/(3*x**2*ln(x)**2+6*x**3*ln(x)+3*x**4),x)

[Out]

(10*log(log(2)) + 20*log(2))/(3*x**2 + 3*x*log(x))

________________________________________________________________________________________

Giac [A]
time = 0.41, size = 17, normalized size = 0.94 \begin {gather*} \frac {10 \, \log \left (4 \, \log \left (2\right )\right )}{3 \, {\left (x^{2} + x \log \left (x\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-10*log(x)-20*x-10)*log(4*log(2))/(3*x^2*log(x)^2+6*x^3*log(x)+3*x^4),x, algorithm="giac")

[Out]

10/3*log(4*log(2))/(x^2 + x*log(x))

________________________________________________________________________________________

Mupad [B]
time = 5.66, size = 18, normalized size = 1.00 \begin {gather*} \frac {10\,\ln \left (\ln \left (16\right )\right )}{3\,x\,\ln \left (x\right )+3\,x^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(4*log(2))*(20*x + 10*log(x) + 10))/(6*x^3*log(x) + 3*x^2*log(x)^2 + 3*x^4),x)

[Out]

(10*log(log(16)))/(3*x*log(x) + 3*x^2)

________________________________________________________________________________________