3.5.10 \(\int e^{\frac {e}{(c+d x)^2}} (a+b x)^2 \, dx\) [410]

Optimal. Leaf size=215 \[ \frac {(b c-a d)^2 e^{\frac {e}{(c+d x)^2}} (c+d x)}{d^3}+\frac {2 b^2 e e^{\frac {e}{(c+d x)^2}} (c+d x)}{3 d^3}-\frac {b (b c-a d) e^{\frac {e}{(c+d x)^2}} (c+d x)^2}{d^3}+\frac {b^2 e^{\frac {e}{(c+d x)^2}} (c+d x)^3}{3 d^3}-\frac {(b c-a d)^2 \sqrt {e} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {e}}{c+d x}\right )}{d^3}-\frac {2 b^2 e^{3/2} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {e}}{c+d x}\right )}{3 d^3}+\frac {b (b c-a d) e \text {Ei}\left (\frac {e}{(c+d x)^2}\right )}{d^3} \]

[Out]

(-a*d+b*c)^2*exp(e/(d*x+c)^2)*(d*x+c)/d^3+2/3*b^2*e*exp(e/(d*x+c)^2)*(d*x+c)/d^3-b*(-a*d+b*c)*exp(e/(d*x+c)^2)
*(d*x+c)^2/d^3+1/3*b^2*exp(e/(d*x+c)^2)*(d*x+c)^3/d^3+b*(-a*d+b*c)*e*Ei(e/(d*x+c)^2)/d^3-2/3*b^2*e^(3/2)*erfi(
e^(1/2)/(d*x+c))*Pi^(1/2)/d^3-(-a*d+b*c)^2*erfi(e^(1/2)/(d*x+c))*e^(1/2)*Pi^(1/2)/d^3

________________________________________________________________________________________

Rubi [A]
time = 0.17, antiderivative size = 215, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 6, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {2258, 2237, 2242, 2235, 2245, 2241} \begin {gather*} -\frac {\sqrt {\pi } \sqrt {e} (b c-a d)^2 \text {Erfi}\left (\frac {\sqrt {e}}{c+d x}\right )}{d^3}+\frac {b e (b c-a d) \text {Ei}\left (\frac {e}{(c+d x)^2}\right )}{d^3}-\frac {b (c+d x)^2 (b c-a d) e^{\frac {e}{(c+d x)^2}}}{d^3}+\frac {(c+d x) (b c-a d)^2 e^{\frac {e}{(c+d x)^2}}}{d^3}-\frac {2 \sqrt {\pi } b^2 e^{3/2} \text {Erfi}\left (\frac {\sqrt {e}}{c+d x}\right )}{3 d^3}+\frac {b^2 (c+d x)^3 e^{\frac {e}{(c+d x)^2}}}{3 d^3}+\frac {2 b^2 e (c+d x) e^{\frac {e}{(c+d x)^2}}}{3 d^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^(e/(c + d*x)^2)*(a + b*x)^2,x]

[Out]

((b*c - a*d)^2*E^(e/(c + d*x)^2)*(c + d*x))/d^3 + (2*b^2*e*E^(e/(c + d*x)^2)*(c + d*x))/(3*d^3) - (b*(b*c - a*
d)*E^(e/(c + d*x)^2)*(c + d*x)^2)/d^3 + (b^2*E^(e/(c + d*x)^2)*(c + d*x)^3)/(3*d^3) - ((b*c - a*d)^2*Sqrt[e]*S
qrt[Pi]*Erfi[Sqrt[e]/(c + d*x)])/d^3 - (2*b^2*e^(3/2)*Sqrt[Pi]*Erfi[Sqrt[e]/(c + d*x)])/(3*d^3) + (b*(b*c - a*
d)*e*ExpIntegralEi[e/(c + d*x)^2])/d^3

Rule 2235

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2
]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2237

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_)), x_Symbol] :> Simp[(c + d*x)*(F^(a + b*(c + d*x)^n)/d), x]
- Dist[b*n*Log[F], Int[(c + d*x)^n*F^(a + b*(c + d*x)^n), x], x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[2/n]
 && ILtQ[n, 0]

Rule 2241

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Simp[F^a*(ExpIntegralEi[
b*(c + d*x)^n*Log[F]]/(f*n)), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[d*e - c*f, 0]

Rule 2242

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Dist[1/(d*(m + 1))
, Subst[Int[F^(a + b*x^2), x], x, (c + d*x)^(m + 1)], x] /; FreeQ[{F, a, b, c, d, m, n}, x] && EqQ[n, 2*(m + 1
)]

Rule 2245

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m
+ 1)*(F^(a + b*(c + d*x)^n)/(d*(m + 1))), x] - Dist[b*n*(Log[F]/(m + 1)), Int[(c + d*x)^(m + n)*F^(a + b*(c +
d*x)^n), x], x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[2*((m + 1)/n)] && LtQ[-4, (m + 1)/n, 5] && IntegerQ[n
] && ((GtQ[n, 0] && LtQ[m, -1]) || (GtQ[-n, 0] && LeQ[-n, m + 1]))

Rule 2258

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*(u_), x_Symbol] :> Int[ExpandLinearProduct[F^(a + b*(c + d*
x)^n), u, c, d, x], x] /; FreeQ[{F, a, b, c, d, n}, x] && PolynomialQ[u, x]

Rubi steps

\begin {align*} \int e^{\frac {e}{(c+d x)^2}} (a+b x)^2 \, dx &=\int \left (\frac {(-b c+a d)^2 e^{\frac {e}{(c+d x)^2}}}{d^2}-\frac {2 b (b c-a d) e^{\frac {e}{(c+d x)^2}} (c+d x)}{d^2}+\frac {b^2 e^{\frac {e}{(c+d x)^2}} (c+d x)^2}{d^2}\right ) \, dx\\ &=\frac {b^2 \int e^{\frac {e}{(c+d x)^2}} (c+d x)^2 \, dx}{d^2}-\frac {(2 b (b c-a d)) \int e^{\frac {e}{(c+d x)^2}} (c+d x) \, dx}{d^2}+\frac {(b c-a d)^2 \int e^{\frac {e}{(c+d x)^2}} \, dx}{d^2}\\ &=\frac {(b c-a d)^2 e^{\frac {e}{(c+d x)^2}} (c+d x)}{d^3}-\frac {b (b c-a d) e^{\frac {e}{(c+d x)^2}} (c+d x)^2}{d^3}+\frac {b^2 e^{\frac {e}{(c+d x)^2}} (c+d x)^3}{3 d^3}+\frac {\left (2 b^2 e\right ) \int e^{\frac {e}{(c+d x)^2}} \, dx}{3 d^2}-\frac {(2 b (b c-a d) e) \int \frac {e^{\frac {e}{(c+d x)^2}}}{c+d x} \, dx}{d^2}+\frac {\left (2 (b c-a d)^2 e\right ) \int \frac {e^{\frac {e}{(c+d x)^2}}}{(c+d x)^2} \, dx}{d^2}\\ &=\frac {(b c-a d)^2 e^{\frac {e}{(c+d x)^2}} (c+d x)}{d^3}+\frac {2 b^2 e e^{\frac {e}{(c+d x)^2}} (c+d x)}{3 d^3}-\frac {b (b c-a d) e^{\frac {e}{(c+d x)^2}} (c+d x)^2}{d^3}+\frac {b^2 e^{\frac {e}{(c+d x)^2}} (c+d x)^3}{3 d^3}+\frac {b (b c-a d) e \text {Ei}\left (\frac {e}{(c+d x)^2}\right )}{d^3}-\frac {\left (2 (b c-a d)^2 e\right ) \text {Subst}\left (\int e^{e x^2} \, dx,x,\frac {1}{c+d x}\right )}{d^3}+\frac {\left (4 b^2 e^2\right ) \int \frac {e^{\frac {e}{(c+d x)^2}}}{(c+d x)^2} \, dx}{3 d^2}\\ &=\frac {(b c-a d)^2 e^{\frac {e}{(c+d x)^2}} (c+d x)}{d^3}+\frac {2 b^2 e e^{\frac {e}{(c+d x)^2}} (c+d x)}{3 d^3}-\frac {b (b c-a d) e^{\frac {e}{(c+d x)^2}} (c+d x)^2}{d^3}+\frac {b^2 e^{\frac {e}{(c+d x)^2}} (c+d x)^3}{3 d^3}-\frac {(b c-a d)^2 \sqrt {e} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {e}}{c+d x}\right )}{d^3}+\frac {b (b c-a d) e \text {Ei}\left (\frac {e}{(c+d x)^2}\right )}{d^3}-\frac {\left (4 b^2 e^2\right ) \text {Subst}\left (\int e^{e x^2} \, dx,x,\frac {1}{c+d x}\right )}{3 d^3}\\ &=\frac {(b c-a d)^2 e^{\frac {e}{(c+d x)^2}} (c+d x)}{d^3}+\frac {2 b^2 e e^{\frac {e}{(c+d x)^2}} (c+d x)}{3 d^3}-\frac {b (b c-a d) e^{\frac {e}{(c+d x)^2}} (c+d x)^2}{d^3}+\frac {b^2 e^{\frac {e}{(c+d x)^2}} (c+d x)^3}{3 d^3}-\frac {(b c-a d)^2 \sqrt {e} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {e}}{c+d x}\right )}{d^3}-\frac {2 b^2 e^{3/2} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {e}}{c+d x}\right )}{3 d^3}+\frac {b (b c-a d) e \text {Ei}\left (\frac {e}{(c+d x)^2}\right )}{d^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.15, size = 176, normalized size = 0.82 \begin {gather*} \frac {c \left (-3 a b c d+3 a^2 d^2+b^2 \left (c^2+2 e\right )\right ) e^{\frac {e}{(c+d x)^2}}}{3 d^3}+\frac {d e^{\frac {e}{(c+d x)^2}} x \left (3 a^2 d^2+3 a b d^2 x+b^2 \left (2 e+d^2 x^2\right )\right )-\sqrt {e} \left (-6 a b c d+3 a^2 d^2+b^2 \left (3 c^2+2 e\right )\right ) \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {e}}{c+d x}\right )+3 b (b c-a d) e \text {Ei}\left (\frac {e}{(c+d x)^2}\right )}{3 d^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^(e/(c + d*x)^2)*(a + b*x)^2,x]

[Out]

(c*(-3*a*b*c*d + 3*a^2*d^2 + b^2*(c^2 + 2*e))*E^(e/(c + d*x)^2))/(3*d^3) + (d*E^(e/(c + d*x)^2)*x*(3*a^2*d^2 +
 3*a*b*d^2*x + b^2*(2*e + d^2*x^2)) - Sqrt[e]*(-6*a*b*c*d + 3*a^2*d^2 + b^2*(3*c^2 + 2*e))*Sqrt[Pi]*Erfi[Sqrt[
e]/(c + d*x)] + 3*b*(b*c - a*d)*e*ExpIntegralEi[e/(c + d*x)^2])/(3*d^3)

________________________________________________________________________________________

Maple [A]
time = 0.09, size = 313, normalized size = 1.46

method result size
derivativedivides \(-\frac {a^{2} \left (-\left (d x +c \right ) {\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}}+\frac {e \sqrt {\pi }\, \erf \left (\frac {\sqrt {-e}}{d x +c}\right )}{\sqrt {-e}}\right )+\frac {b^{2} \left (-\frac {\left (d x +c \right )^{3} {\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}}}{3}+\frac {2 e \left (-\left (d x +c \right ) {\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}}+\frac {e \sqrt {\pi }\, \erf \left (\frac {\sqrt {-e}}{d x +c}\right )}{\sqrt {-e}}\right )}{3}\right )}{d^{2}}+\frac {b^{2} c^{2} \left (-\left (d x +c \right ) {\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}}+\frac {e \sqrt {\pi }\, \erf \left (\frac {\sqrt {-e}}{d x +c}\right )}{\sqrt {-e}}\right )}{d^{2}}+\frac {2 b a \left (-\frac {{\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}} \left (d x +c \right )^{2}}{2}-\frac {e \expIntegral \left (1, -\frac {e}{\left (d x +c \right )^{2}}\right )}{2}\right )}{d}-\frac {2 b^{2} c \left (-\frac {{\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}} \left (d x +c \right )^{2}}{2}-\frac {e \expIntegral \left (1, -\frac {e}{\left (d x +c \right )^{2}}\right )}{2}\right )}{d^{2}}-\frac {2 b c a \left (-\left (d x +c \right ) {\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}}+\frac {e \sqrt {\pi }\, \erf \left (\frac {\sqrt {-e}}{d x +c}\right )}{\sqrt {-e}}\right )}{d}}{d}\) \(313\)
default \(-\frac {a^{2} \left (-\left (d x +c \right ) {\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}}+\frac {e \sqrt {\pi }\, \erf \left (\frac {\sqrt {-e}}{d x +c}\right )}{\sqrt {-e}}\right )+\frac {b^{2} \left (-\frac {\left (d x +c \right )^{3} {\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}}}{3}+\frac {2 e \left (-\left (d x +c \right ) {\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}}+\frac {e \sqrt {\pi }\, \erf \left (\frac {\sqrt {-e}}{d x +c}\right )}{\sqrt {-e}}\right )}{3}\right )}{d^{2}}+\frac {b^{2} c^{2} \left (-\left (d x +c \right ) {\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}}+\frac {e \sqrt {\pi }\, \erf \left (\frac {\sqrt {-e}}{d x +c}\right )}{\sqrt {-e}}\right )}{d^{2}}+\frac {2 b a \left (-\frac {{\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}} \left (d x +c \right )^{2}}{2}-\frac {e \expIntegral \left (1, -\frac {e}{\left (d x +c \right )^{2}}\right )}{2}\right )}{d}-\frac {2 b^{2} c \left (-\frac {{\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}} \left (d x +c \right )^{2}}{2}-\frac {e \expIntegral \left (1, -\frac {e}{\left (d x +c \right )^{2}}\right )}{2}\right )}{d^{2}}-\frac {2 b c a \left (-\left (d x +c \right ) {\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}}+\frac {e \sqrt {\pi }\, \erf \left (\frac {\sqrt {-e}}{d x +c}\right )}{\sqrt {-e}}\right )}{d}}{d}\) \(313\)
risch \(a^{2} {\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}} x +\frac {a^{2} {\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}} c}{d}-\frac {a^{2} e \sqrt {\pi }\, \erf \left (\frac {\sqrt {-e}}{d x +c}\right )}{d \sqrt {-e}}+\frac {b^{2} {\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}} x^{3}}{3}+\frac {b^{2} {\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}} c^{3}}{3 d^{3}}+\frac {2 b^{2} e \,{\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}} x}{3 d^{2}}+\frac {2 b^{2} e \,{\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}} c}{3 d^{3}}-\frac {2 b^{2} e^{2} \sqrt {\pi }\, \erf \left (\frac {\sqrt {-e}}{d x +c}\right )}{3 d^{3} \sqrt {-e}}-\frac {c^{2} b^{2} e \sqrt {\pi }\, \erf \left (\frac {\sqrt {-e}}{d x +c}\right )}{d^{3} \sqrt {-e}}+a b \,{\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}} x^{2}-\frac {a b \,{\mathrm e}^{\frac {e}{\left (d x +c \right )^{2}}} c^{2}}{d^{2}}+\frac {a b e \expIntegral \left (1, -\frac {e}{\left (d x +c \right )^{2}}\right )}{d^{2}}-\frac {b^{2} c e \expIntegral \left (1, -\frac {e}{\left (d x +c \right )^{2}}\right )}{d^{3}}+\frac {2 a b c e \sqrt {\pi }\, \erf \left (\frac {\sqrt {-e}}{d x +c}\right )}{d^{2} \sqrt {-e}}\) \(320\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(e/(d*x+c)^2)*(b*x+a)^2,x,method=_RETURNVERBOSE)

[Out]

-1/d*(a^2*(-(d*x+c)*exp(e/(d*x+c)^2)+e*Pi^(1/2)/(-e)^(1/2)*erf((-e)^(1/2)/(d*x+c)))+b^2/d^2*(-1/3*(d*x+c)^3*ex
p(e/(d*x+c)^2)+2/3*e*(-(d*x+c)*exp(e/(d*x+c)^2)+e*Pi^(1/2)/(-e)^(1/2)*erf((-e)^(1/2)/(d*x+c))))+b^2/d^2*c^2*(-
(d*x+c)*exp(e/(d*x+c)^2)+e*Pi^(1/2)/(-e)^(1/2)*erf((-e)^(1/2)/(d*x+c)))+2*b/d*a*(-1/2*exp(e/(d*x+c)^2)*(d*x+c)
^2-1/2*e*Ei(1,-e/(d*x+c)^2))-2*b^2/d^2*c*(-1/2*exp(e/(d*x+c)^2)*(d*x+c)^2-1/2*e*Ei(1,-e/(d*x+c)^2))-2*b/d*c*a*
(-(d*x+c)*exp(e/(d*x+c)^2)+e*Pi^(1/2)/(-e)^(1/2)*erf((-e)^(1/2)/(d*x+c))))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(e/(d*x+c)^2)*(b*x+a)^2,x, algorithm="maxima")

[Out]

1/3*(b^2*d^2*x^3 + 3*a*b*d^2*x^2 + (3*a^2*d^2 + 2*b^2*e)*x)*e^(e/(d^2*x^2 + 2*c*d*x + c^2))/d^2 + integrate(-2
/3*(b^2*c^3*e + 3*(b^2*c*d^2*e - a*b*d^3*e)*x^2 - (3*a^2*d^3*e - (3*c^2*d*e - 2*d*e^2)*b^2)*x)*e^(e/(d^2*x^2 +
 2*c*d*x + c^2))/(d^5*x^3 + 3*c*d^4*x^2 + 3*c^2*d^3*x + c^3*d^2), x)

________________________________________________________________________________________

Fricas [A]
time = 0.38, size = 199, normalized size = 0.93 \begin {gather*} -\frac {\sqrt {\pi } {\left (3 \, b^{2} c^{2} d - 6 \, a b c d^{2} + 3 \, a^{2} d^{3} + 2 \, b^{2} d e\right )} \sqrt {\frac {1}{d^{2}}} \operatorname {erfi}\left (\frac {d \sqrt {\frac {1}{d^{2}}} e^{\frac {1}{2}}}{d x + c}\right ) e^{\frac {1}{2}} - 3 \, {\left (b^{2} c - a b d\right )} {\rm Ei}\left (\frac {e}{d^{2} x^{2} + 2 \, c d x + c^{2}}\right ) e - {\left (b^{2} d^{3} x^{3} + 3 \, a b d^{3} x^{2} + 3 \, a^{2} d^{3} x + b^{2} c^{3} - 3 \, a b c^{2} d + 3 \, a^{2} c d^{2} + 2 \, {\left (b^{2} d x + b^{2} c\right )} e\right )} e^{\left (\frac {e}{d^{2} x^{2} + 2 \, c d x + c^{2}}\right )}}{3 \, d^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(e/(d*x+c)^2)*(b*x+a)^2,x, algorithm="fricas")

[Out]

-1/3*(sqrt(pi)*(3*b^2*c^2*d - 6*a*b*c*d^2 + 3*a^2*d^3 + 2*b^2*d*e)*sqrt(d^(-2))*erfi(d*sqrt(d^(-2))*e^(1/2)/(d
*x + c))*e^(1/2) - 3*(b^2*c - a*b*d)*Ei(e/(d^2*x^2 + 2*c*d*x + c^2))*e - (b^2*d^3*x^3 + 3*a*b*d^3*x^2 + 3*a^2*
d^3*x + b^2*c^3 - 3*a*b*c^2*d + 3*a^2*c*d^2 + 2*(b^2*d*x + b^2*c)*e)*e^(e/(d^2*x^2 + 2*c*d*x + c^2)))/d^3

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b x\right )^{2} e^{\frac {e}{c^{2} + 2 c d x + d^{2} x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(e/(d*x+c)**2)*(b*x+a)**2,x)

[Out]

Integral((a + b*x)**2*exp(e/(c**2 + 2*c*d*x + d**2*x**2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(e/(d*x+c)^2)*(b*x+a)^2,x, algorithm="giac")

[Out]

integrate((b*x + a)^2*e^(e/(d*x + c)^2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\mathrm {e}}^{\frac {e}{{\left (c+d\,x\right )}^2}}\,{\left (a+b\,x\right )}^2 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(e/(c + d*x)^2)*(a + b*x)^2,x)

[Out]

int(exp(e/(c + d*x)^2)*(a + b*x)^2, x)

________________________________________________________________________________________