3.6.25 \(\int \frac {x^2}{1+2 f^{c+d x}+f^{2 c+2 d x}} \, dx\) [525]

Optimal. Leaf size=145 \[ \frac {x^3}{3}-\frac {x^2}{d \log (f)}+\frac {x^2}{d \left (1+f^{c+d x}\right ) \log (f)}+\frac {2 x \log \left (1+f^{c+d x}\right )}{d^2 \log ^2(f)}-\frac {x^2 \log \left (1+f^{c+d x}\right )}{d \log (f)}+\frac {2 \text {Li}_2\left (-f^{c+d x}\right )}{d^3 \log ^3(f)}-\frac {2 x \text {Li}_2\left (-f^{c+d x}\right )}{d^2 \log ^2(f)}+\frac {2 \text {Li}_3\left (-f^{c+d x}\right )}{d^3 \log ^3(f)} \]

[Out]

1/3*x^3-x^2/d/ln(f)+x^2/d/(1+f^(d*x+c))/ln(f)+2*x*ln(1+f^(d*x+c))/d^2/ln(f)^2-x^2*ln(1+f^(d*x+c))/d/ln(f)+2*po
lylog(2,-f^(d*x+c))/d^3/ln(f)^3-2*x*polylog(2,-f^(d*x+c))/d^2/ln(f)^2+2*polylog(3,-f^(d*x+c))/d^3/ln(f)^3

________________________________________________________________________________________

Rubi [A]
time = 0.29, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 10, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.370, Rules used = {6820, 2216, 2215, 2221, 2611, 2320, 6724, 2222, 2317, 2438} \begin {gather*} \frac {2 \text {PolyLog}\left (2,-f^{c+d x}\right )}{d^3 \log ^3(f)}+\frac {2 \text {PolyLog}\left (3,-f^{c+d x}\right )}{d^3 \log ^3(f)}-\frac {2 x \text {PolyLog}\left (2,-f^{c+d x}\right )}{d^2 \log ^2(f)}+\frac {2 x \log \left (f^{c+d x}+1\right )}{d^2 \log ^2(f)}-\frac {x^2 \log \left (f^{c+d x}+1\right )}{d \log (f)}+\frac {x^2}{d \log (f) \left (f^{c+d x}+1\right )}-\frac {x^2}{d \log (f)}+\frac {x^3}{3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/(1 + 2*f^(c + d*x) + f^(2*c + 2*d*x)),x]

[Out]

x^3/3 - x^2/(d*Log[f]) + x^2/(d*(1 + f^(c + d*x))*Log[f]) + (2*x*Log[1 + f^(c + d*x)])/(d^2*Log[f]^2) - (x^2*L
og[1 + f^(c + d*x)])/(d*Log[f]) + (2*PolyLog[2, -f^(c + d*x)])/(d^3*Log[f]^3) - (2*x*PolyLog[2, -f^(c + d*x)])
/(d^2*Log[f]^2) + (2*PolyLog[3, -f^(c + d*x)])/(d^3*Log[f]^3)

Rule 2215

Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[(c
+ d*x)^(m + 1)/(a*d*(m + 1)), x] - Dist[b/a, Int[(c + d*x)^m*((F^(g*(e + f*x)))^n/(a + b*(F^(g*(e + f*x)))^n))
, x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2216

Int[((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.))^(p_)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Dis
t[1/a, Int[(c + d*x)^m*(a + b*(F^(g*(e + f*x)))^n)^(p + 1), x], x] - Dist[b/a, Int[(c + d*x)^m*(F^(g*(e + f*x)
))^n*(a + b*(F^(g*(e + f*x)))^n)^p, x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && ILtQ[p, 0] && IGtQ[m, 0
]

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2222

Int[((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((a_.) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.))^(p_.)*
((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^m*((a + b*(F^(g*(e + f*x)))^n)^(p + 1)/(b*f*g*n*(p + 1
)*Log[F])), x] - Dist[d*(m/(b*f*g*n*(p + 1)*Log[F])), Int[(c + d*x)^(m - 1)*(a + b*(F^(g*(e + f*x)))^n)^(p + 1
), x], x] /; FreeQ[{F, a, b, c, d, e, f, g, m, n, p}, x] && NeQ[p, -1]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2320

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 2611

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(
f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + b*x)))^n]/(b*c*n*Log[F])), x] + Dist[g*(m/(b*c*n*Log[F])), Int[(f + g*
x)^(m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 6724

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rule 6820

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

\begin {align*} \int \frac {x^2}{1+2 f^{c+d x}+f^{2 c+2 d x}} \, dx &=\int \frac {x^2}{\left (1+f^{c+d x}\right )^2} \, dx\\ &=-\int \frac {f^{c+d x} x^2}{\left (1+f^{c+d x}\right )^2} \, dx+\int \frac {x^2}{1+f^{c+d x}} \, dx\\ &=\frac {x^3}{3}+\frac {x^2}{d \left (1+f^{c+d x}\right ) \log (f)}-\frac {2 \int \frac {x}{1+f^{c+d x}} \, dx}{d \log (f)}-\int \frac {f^{c+d x} x^2}{1+f^{c+d x}} \, dx\\ &=\frac {x^3}{3}-\frac {x^2}{d \log (f)}+\frac {x^2}{d \left (1+f^{c+d x}\right ) \log (f)}-\frac {x^2 \log \left (1+f^{c+d x}\right )}{d \log (f)}+\frac {2 \int \frac {f^{c+d x} x}{1+f^{c+d x}} \, dx}{d \log (f)}+\frac {2 \int x \log \left (1+f^{c+d x}\right ) \, dx}{d \log (f)}\\ &=\frac {x^3}{3}-\frac {x^2}{d \log (f)}+\frac {x^2}{d \left (1+f^{c+d x}\right ) \log (f)}+\frac {2 x \log \left (1+f^{c+d x}\right )}{d^2 \log ^2(f)}-\frac {x^2 \log \left (1+f^{c+d x}\right )}{d \log (f)}-\frac {2 x \text {Li}_2\left (-f^{c+d x}\right )}{d^2 \log ^2(f)}-\frac {2 \int \log \left (1+f^{c+d x}\right ) \, dx}{d^2 \log ^2(f)}+\frac {2 \int \text {Li}_2\left (-f^{c+d x}\right ) \, dx}{d^2 \log ^2(f)}\\ &=\frac {x^3}{3}-\frac {x^2}{d \log (f)}+\frac {x^2}{d \left (1+f^{c+d x}\right ) \log (f)}+\frac {2 x \log \left (1+f^{c+d x}\right )}{d^2 \log ^2(f)}-\frac {x^2 \log \left (1+f^{c+d x}\right )}{d \log (f)}-\frac {2 x \text {Li}_2\left (-f^{c+d x}\right )}{d^2 \log ^2(f)}-\frac {2 \text {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,f^{c+d x}\right )}{d^3 \log ^3(f)}+\frac {2 \text {Subst}\left (\int \frac {\text {Li}_2(-x)}{x} \, dx,x,f^{c+d x}\right )}{d^3 \log ^3(f)}\\ &=\frac {x^3}{3}-\frac {x^2}{d \log (f)}+\frac {x^2}{d \left (1+f^{c+d x}\right ) \log (f)}+\frac {2 x \log \left (1+f^{c+d x}\right )}{d^2 \log ^2(f)}-\frac {x^2 \log \left (1+f^{c+d x}\right )}{d \log (f)}+\frac {2 \text {Li}_2\left (-f^{c+d x}\right )}{d^3 \log ^3(f)}-\frac {2 x \text {Li}_2\left (-f^{c+d x}\right )}{d^2 \log ^2(f)}+\frac {2 \text {Li}_3\left (-f^{c+d x}\right )}{d^3 \log ^3(f)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.20, size = 123, normalized size = 0.85 \begin {gather*} \frac {d^3 x^3 \log ^3(f)+6 d x \log (f) \log \left (1+f^{c+d x}\right )-\frac {3 d^2 x^2 \log ^2(f) \left (f^{c+d x}+\left (1+f^{c+d x}\right ) \log \left (1+f^{c+d x}\right )\right )}{1+f^{c+d x}}+(6-6 d x \log (f)) \text {Li}_2\left (-f^{c+d x}\right )+6 \text {Li}_3\left (-f^{c+d x}\right )}{3 d^3 \log ^3(f)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/(1 + 2*f^(c + d*x) + f^(2*c + 2*d*x)),x]

[Out]

(d^3*x^3*Log[f]^3 + 6*d*x*Log[f]*Log[1 + f^(c + d*x)] - (3*d^2*x^2*Log[f]^2*(f^(c + d*x) + (1 + f^(c + d*x))*L
og[1 + f^(c + d*x)]))/(1 + f^(c + d*x)) + (6 - 6*d*x*Log[f])*PolyLog[2, -f^(c + d*x)] + 6*PolyLog[3, -f^(c + d
*x)])/(3*d^3*Log[f]^3)

________________________________________________________________________________________

Maple [A]
time = 0.04, size = 232, normalized size = 1.60

method result size
risch \(\frac {x^{2}}{d \left (1+f^{d x +c}\right ) \ln \left (f \right )}+\frac {x^{3}}{3}-\frac {c^{2} x}{d^{2}}-\frac {2 c^{3}}{3 d^{3}}-\frac {\ln \left (1+f^{d x} f^{c}\right ) x^{2}}{d \ln \left (f \right )}-\frac {2 \polylog \left (2, -f^{d x} f^{c}\right ) x}{d^{2} \ln \left (f \right )^{2}}+\frac {2 \polylog \left (3, -f^{d x} f^{c}\right )}{d^{3} \ln \left (f \right )^{3}}+\frac {c^{2} \ln \left (f^{d x} f^{c}\right )}{d^{3} \ln \left (f \right )}-\frac {x^{2}}{d \ln \left (f \right )}-\frac {2 c x}{d^{2} \ln \left (f \right )}-\frac {c^{2}}{d^{3} \ln \left (f \right )}+\frac {2 \ln \left (1+f^{d x} f^{c}\right ) x}{d^{2} \ln \left (f \right )^{2}}+\frac {2 \polylog \left (2, -f^{d x} f^{c}\right )}{d^{3} \ln \left (f \right )^{3}}+\frac {2 c \ln \left (f^{d x} f^{c}\right )}{d^{3} \ln \left (f \right )^{2}}\) \(232\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(1+2*f^(d*x+c)+f^(2*d*x+2*c)),x,method=_RETURNVERBOSE)

[Out]

x^2/d/(1+f^(d*x+c))/ln(f)+1/3*x^3-1/d^2*c^2*x-2/3/d^3*c^3-1/d/ln(f)*ln(1+f^(d*x)*f^c)*x^2-2/d^2/ln(f)^2*polylo
g(2,-f^(d*x)*f^c)*x+2/d^3/ln(f)^3*polylog(3,-f^(d*x)*f^c)+1/d^3/ln(f)*c^2*ln(f^(d*x)*f^c)-x^2/d/ln(f)-2/d^2/ln
(f)*c*x-1/d^3/ln(f)*c^2+2/d^2/ln(f)^2*ln(1+f^(d*x)*f^c)*x+2/d^3/ln(f)^3*polylog(2,-f^(d*x)*f^c)+2/d^3/ln(f)^2*
c*ln(f^(d*x)*f^c)

________________________________________________________________________________________

Maxima [A]
time = 0.30, size = 159, normalized size = 1.10 \begin {gather*} \frac {x^{2}}{d f^{d x} f^{c} \log \left (f\right ) + d \log \left (f\right )} + \frac {d^{3} x^{3} \log \left (f\right )^{3} - 3 \, d^{2} x^{2} \log \left (f\right )^{2}}{3 \, d^{3} \log \left (f\right )^{3}} - \frac {d^{2} x^{2} \log \left (f^{d x} f^{c} + 1\right ) \log \left (f\right )^{2} + 2 \, d x {\rm Li}_2\left (-f^{d x} f^{c}\right ) \log \left (f\right ) - 2 \, {\rm Li}_{3}(-f^{d x} f^{c})}{d^{3} \log \left (f\right )^{3}} + \frac {2 \, {\left (d x \log \left (f^{d x} f^{c} + 1\right ) \log \left (f\right ) + {\rm Li}_2\left (-f^{d x} f^{c}\right )\right )}}{d^{3} \log \left (f\right )^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(1+2*f^(d*x+c)+f^(2*d*x+2*c)),x, algorithm="maxima")

[Out]

x^2/(d*f^(d*x)*f^c*log(f) + d*log(f)) + 1/3*(d^3*x^3*log(f)^3 - 3*d^2*x^2*log(f)^2)/(d^3*log(f)^3) - (d^2*x^2*
log(f^(d*x)*f^c + 1)*log(f)^2 + 2*d*x*dilog(-f^(d*x)*f^c)*log(f) - 2*polylog(3, -f^(d*x)*f^c))/(d^3*log(f)^3)
+ 2*(d*x*log(f^(d*x)*f^c + 1)*log(f) + dilog(-f^(d*x)*f^c))/(d^3*log(f)^3)

________________________________________________________________________________________

Fricas [A]
time = 0.41, size = 210, normalized size = 1.45 \begin {gather*} \frac {3 \, c^{2} \log \left (f\right )^{2} + {\left (d^{3} x^{3} + c^{3}\right )} \log \left (f\right )^{3} + {\left ({\left (d^{3} x^{3} + c^{3}\right )} \log \left (f\right )^{3} - 3 \, {\left (d^{2} x^{2} - c^{2}\right )} \log \left (f\right )^{2}\right )} f^{d x + c} - 6 \, {\left (d x \log \left (f\right ) + {\left (d x \log \left (f\right ) - 1\right )} f^{d x + c} - 1\right )} {\rm Li}_2\left (-f^{d x + c}\right ) - 3 \, {\left (d^{2} x^{2} \log \left (f\right )^{2} - 2 \, d x \log \left (f\right ) + {\left (d^{2} x^{2} \log \left (f\right )^{2} - 2 \, d x \log \left (f\right )\right )} f^{d x + c}\right )} \log \left (f^{d x + c} + 1\right ) + 6 \, {\left (f^{d x + c} + 1\right )} {\rm polylog}\left (3, -f^{d x + c}\right )}{3 \, {\left (d^{3} f^{d x + c} \log \left (f\right )^{3} + d^{3} \log \left (f\right )^{3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(1+2*f^(d*x+c)+f^(2*d*x+2*c)),x, algorithm="fricas")

[Out]

1/3*(3*c^2*log(f)^2 + (d^3*x^3 + c^3)*log(f)^3 + ((d^3*x^3 + c^3)*log(f)^3 - 3*(d^2*x^2 - c^2)*log(f)^2)*f^(d*
x + c) - 6*(d*x*log(f) + (d*x*log(f) - 1)*f^(d*x + c) - 1)*dilog(-f^(d*x + c)) - 3*(d^2*x^2*log(f)^2 - 2*d*x*l
og(f) + (d^2*x^2*log(f)^2 - 2*d*x*log(f))*f^(d*x + c))*log(f^(d*x + c) + 1) + 6*(f^(d*x + c) + 1)*polylog(3, -
f^(d*x + c)))/(d^3*f^(d*x + c)*log(f)^3 + d^3*log(f)^3)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {x^{2}}{d f^{c + d x} \log {\left (f \right )} + d \log {\left (f \right )}} + \frac {\int \left (- \frac {2 x}{e^{c \log {\left (f \right )}} e^{d x \log {\left (f \right )}} + 1}\right )\, dx + \int \frac {d x^{2} \log {\left (f \right )}}{e^{c \log {\left (f \right )}} e^{d x \log {\left (f \right )}} + 1}\, dx}{d \log {\left (f \right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(1+2*f**(d*x+c)+f**(2*d*x+2*c)),x)

[Out]

x**2/(d*f**(c + d*x)*log(f) + d*log(f)) + (Integral(-2*x/(exp(c*log(f))*exp(d*x*log(f)) + 1), x) + Integral(d*
x**2*log(f)/(exp(c*log(f))*exp(d*x*log(f)) + 1), x))/(d*log(f))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(1+2*f^(d*x+c)+f^(2*d*x+2*c)),x, algorithm="giac")

[Out]

integrate(x^2/(f^(2*d*x + 2*c) + 2*f^(d*x + c) + 1), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^2}{f^{2\,c+2\,d\,x}+2\,f^{c+d\,x}+1} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(f^(2*c + 2*d*x) + 2*f^(c + d*x) + 1),x)

[Out]

int(x^2/(f^(2*c + 2*d*x) + 2*f^(c + d*x) + 1), x)

________________________________________________________________________________________