3.6.69 \(\int a^x b^x c^x \, dx\) [569]

Optimal. Leaf size=19 \[ \frac {a^x b^x c^x}{\log (a)+\log (b)+\log (c)} \]

[Out]

a^x*b^x*c^x/(ln(a)+ln(b)+ln(c))

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2325, 2225} \begin {gather*} \frac {a^x b^x c^x}{\log (a)+\log (b)+\log (c)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[a^x*b^x*c^x,x]

[Out]

(a^x*b^x*c^x)/(Log[a] + Log[b] + Log[c])

Rule 2225

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2325

Int[(u_.)*(F_)^(v_)*(G_)^(w_), x_Symbol] :> With[{z = v*Log[F] + w*Log[G]}, Int[u*NormalizeIntegrand[E^z, x],
x] /; BinomialQ[z, x] || (PolynomialQ[z, x] && LeQ[Exponent[z, x], 2])] /; FreeQ[{F, G}, x]

Rubi steps

\begin {align*} \int a^x b^x c^x \, dx &=\int c^x e^{x (\log (a)+\log (b))} \, dx\\ &=\int e^{x (\log (a)+\log (b)+\log (c))} \, dx\\ &=\frac {a^x b^x c^x}{\log (a)+\log (b)+\log (c)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 21, normalized size = 1.11 \begin {gather*} \frac {e^{x (\log (a)+\log (b)+\log (c))}}{\log (a)+\log (b)+\log (c)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[a^x*b^x*c^x,x]

[Out]

E^(x*(Log[a] + Log[b] + Log[c]))/(Log[a] + Log[b] + Log[c])

________________________________________________________________________________________

Maple [A]
time = 0.04, size = 20, normalized size = 1.05

method result size
gosper \(\frac {a^{x} b^{x} c^{x}}{\ln \left (a \right )+\ln \left (b \right )+\ln \left (c \right )}\) \(20\)
risch \(\frac {a^{x} b^{x} c^{x}}{\ln \left (a \right )+\ln \left (b \right )+\ln \left (c \right )}\) \(20\)
norman \(\frac {{\mathrm e}^{x \ln \left (c \right )} {\mathrm e}^{\ln \left (a \right ) x} {\mathrm e}^{\ln \left (b \right ) x}}{\ln \left (a \right )+\ln \left (b \right )+\ln \left (c \right )}\) \(26\)
meijerg \(-\frac {1-{\mathrm e}^{x \ln \left (b \right ) \left (1+\frac {\ln \left (a \right )}{\ln \left (b \right )}\right ) \left (1+\frac {\ln \left (c \right )}{\ln \left (b \right ) \left (1+\frac {\ln \left (a \right )}{\ln \left (b \right )}\right )}\right )}}{\ln \left (b \right ) \left (1+\frac {\ln \left (a \right )}{\ln \left (b \right )}\right ) \left (1+\frac {\ln \left (c \right )}{\ln \left (b \right ) \left (1+\frac {\ln \left (a \right )}{\ln \left (b \right )}\right )}\right )}\) \(78\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(a^x*b^x*c^x,x,method=_RETURNVERBOSE)

[Out]

a^x*b^x*c^x/(ln(a)+ln(b)+ln(c))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(a^x*b^x*c^x,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(log(c)/log(a)+log(b)/log(a)>0)
', see `assu

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 19, normalized size = 1.00 \begin {gather*} \frac {a^{x} b^{x} c^{x}}{\log \left (a\right ) + \log \left (b\right ) + \log \left (c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(a^x*b^x*c^x,x, algorithm="fricas")

[Out]

a^x*b^x*c^x/(log(a) + log(b) + log(c))

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 49 vs. \(2 (19) = 38\).
time = 0.60, size = 49, normalized size = 2.58 \begin {gather*} \begin {cases} \frac {a^{x} b^{x} c^{x}}{\log {\left (a \right )} + \log {\left (b \right )} + \log {\left (c \right )}} & \text {for}\: a \neq \frac {1}{b c} \\\frac {b^{x} c^{x} \left (\frac {1}{b c}\right )^{x}}{\log {\left (b \right )} + \log {\left (c \right )} + \log {\left (\frac {1}{b c} \right )}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(a**x*b**x*c**x,x)

[Out]

Piecewise((a**x*b**x*c**x/(log(a) + log(b) + log(c)), Ne(a, 1/(b*c))), (b**x*c**x*(1/(b*c))**x/(log(b) + log(c
) + log(1/(b*c))), True))

________________________________________________________________________________________

Giac [C] Result contains complex when optimal does not.
time = 4.68, size = 313, normalized size = 16.47 \begin {gather*} 2 \, {\left (\frac {2 \, {\left (\log \left ({\left | a \right |}\right ) + \log \left ({\left | b \right |}\right ) + \log \left ({\left | c \right |}\right )\right )} \cos \left (-\frac {1}{2} \, \pi x \mathrm {sgn}\left (a\right ) - \frac {1}{2} \, \pi x \mathrm {sgn}\left (b\right ) - \frac {1}{2} \, \pi x \mathrm {sgn}\left (c\right ) + \frac {3}{2} \, \pi x\right )}{{\left (3 \, \pi - \pi \mathrm {sgn}\left (a\right ) - \pi \mathrm {sgn}\left (b\right ) - \pi \mathrm {sgn}\left (c\right )\right )}^{2} + 4 \, {\left (\log \left ({\left | a \right |}\right ) + \log \left ({\left | b \right |}\right ) + \log \left ({\left | c \right |}\right )\right )}^{2}} + \frac {{\left (3 \, \pi - \pi \mathrm {sgn}\left (a\right ) - \pi \mathrm {sgn}\left (b\right ) - \pi \mathrm {sgn}\left (c\right )\right )} \sin \left (-\frac {1}{2} \, \pi x \mathrm {sgn}\left (a\right ) - \frac {1}{2} \, \pi x \mathrm {sgn}\left (b\right ) - \frac {1}{2} \, \pi x \mathrm {sgn}\left (c\right ) + \frac {3}{2} \, \pi x\right )}{{\left (3 \, \pi - \pi \mathrm {sgn}\left (a\right ) - \pi \mathrm {sgn}\left (b\right ) - \pi \mathrm {sgn}\left (c\right )\right )}^{2} + 4 \, {\left (\log \left ({\left | a \right |}\right ) + \log \left ({\left | b \right |}\right ) + \log \left ({\left | c \right |}\right )\right )}^{2}}\right )} e^{\left (x {\left (\log \left ({\left | a \right |}\right ) + \log \left ({\left | b \right |}\right ) + \log \left ({\left | c \right |}\right )\right )}\right )} + i \, {\left (\frac {i \, e^{\left (\frac {1}{2} i \, \pi x \mathrm {sgn}\left (a\right ) + \frac {1}{2} i \, \pi x \mathrm {sgn}\left (b\right ) + \frac {1}{2} i \, \pi x \mathrm {sgn}\left (c\right ) - \frac {3}{2} i \, \pi x\right )}}{-3 i \, \pi + i \, \pi \mathrm {sgn}\left (a\right ) + i \, \pi \mathrm {sgn}\left (b\right ) + i \, \pi \mathrm {sgn}\left (c\right ) + 2 \, \log \left ({\left | a \right |}\right ) + 2 \, \log \left ({\left | b \right |}\right ) + 2 \, \log \left ({\left | c \right |}\right )} - \frac {i \, e^{\left (-\frac {1}{2} i \, \pi x \mathrm {sgn}\left (a\right ) - \frac {1}{2} i \, \pi x \mathrm {sgn}\left (b\right ) - \frac {1}{2} i \, \pi x \mathrm {sgn}\left (c\right ) + \frac {3}{2} i \, \pi x\right )}}{3 i \, \pi - i \, \pi \mathrm {sgn}\left (a\right ) - i \, \pi \mathrm {sgn}\left (b\right ) - i \, \pi \mathrm {sgn}\left (c\right ) + 2 \, \log \left ({\left | a \right |}\right ) + 2 \, \log \left ({\left | b \right |}\right ) + 2 \, \log \left ({\left | c \right |}\right )}\right )} e^{\left (x {\left (\log \left ({\left | a \right |}\right ) + \log \left ({\left | b \right |}\right ) + \log \left ({\left | c \right |}\right )\right )}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(a^x*b^x*c^x,x, algorithm="giac")

[Out]

2*(2*(log(abs(a)) + log(abs(b)) + log(abs(c)))*cos(-1/2*pi*x*sgn(a) - 1/2*pi*x*sgn(b) - 1/2*pi*x*sgn(c) + 3/2*
pi*x)/((3*pi - pi*sgn(a) - pi*sgn(b) - pi*sgn(c))^2 + 4*(log(abs(a)) + log(abs(b)) + log(abs(c)))^2) + (3*pi -
 pi*sgn(a) - pi*sgn(b) - pi*sgn(c))*sin(-1/2*pi*x*sgn(a) - 1/2*pi*x*sgn(b) - 1/2*pi*x*sgn(c) + 3/2*pi*x)/((3*p
i - pi*sgn(a) - pi*sgn(b) - pi*sgn(c))^2 + 4*(log(abs(a)) + log(abs(b)) + log(abs(c)))^2))*e^(x*(log(abs(a)) +
 log(abs(b)) + log(abs(c)))) + I*(I*e^(1/2*I*pi*x*sgn(a) + 1/2*I*pi*x*sgn(b) + 1/2*I*pi*x*sgn(c) - 3/2*I*pi*x)
/(-3*I*pi + I*pi*sgn(a) + I*pi*sgn(b) + I*pi*sgn(c) + 2*log(abs(a)) + 2*log(abs(b)) + 2*log(abs(c))) - I*e^(-1
/2*I*pi*x*sgn(a) - 1/2*I*pi*x*sgn(b) - 1/2*I*pi*x*sgn(c) + 3/2*I*pi*x)/(3*I*pi - I*pi*sgn(a) - I*pi*sgn(b) - I
*pi*sgn(c) + 2*log(abs(a)) + 2*log(abs(b)) + 2*log(abs(c))))*e^(x*(log(abs(a)) + log(abs(b)) + log(abs(c))))

________________________________________________________________________________________

Mupad [B]
time = 3.51, size = 19, normalized size = 1.00 \begin {gather*} \frac {a^x\,b^x\,c^x}{\ln \left (a\right )+\ln \left (b\right )+\ln \left (c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(a^x*b^x*c^x,x)

[Out]

(a^x*b^x*c^x)/(log(a) + log(b) + log(c))

________________________________________________________________________________________