3.7.56 \(\int \frac {e^{-2 x}+e^{2 x}}{-e^{-2 x}+e^{2 x}} \, dx\) [656]

Optimal. Leaf size=18 \[ -x+\frac {1}{2} \log \left (1-e^{4 x}\right ) \]

[Out]

-x+1/2*ln(1-exp(4*x))

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {2320, 457, 78} \begin {gather*} \frac {1}{2} \log \left (1-e^{4 x}\right )-x \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^(-2*x) + E^(2*x))/(-E^(-2*x) + E^(2*x)),x]

[Out]

-x + Log[1 - E^(4*x)]/2

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 2320

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rubi steps

\begin {align*} \int \frac {e^{-2 x}+e^{2 x}}{-e^{-2 x}+e^{2 x}} \, dx &=\frac {1}{2} \text {Subst}\left (\int \frac {-1-x^2}{x \left (1-x^2\right )} \, dx,x,e^{2 x}\right )\\ &=\frac {1}{4} \text {Subst}\left (\int \frac {-1-x}{(1-x) x} \, dx,x,e^{4 x}\right )\\ &=\frac {1}{4} \text {Subst}\left (\int \left (\frac {2}{-1+x}-\frac {1}{x}\right ) \, dx,x,e^{4 x}\right )\\ &=-x+\frac {1}{2} \log \left (1-e^{4 x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(39\) vs. \(2(18)=36\).
time = 0.04, size = 39, normalized size = 2.17 \begin {gather*} -\log \left (e^x\right )+\frac {1}{2} \log \left (-1+e^x\right )+\frac {1}{2} \log \left (1+e^x\right )+\frac {1}{2} \log \left (1+e^{2 x}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^(-2*x) + E^(2*x))/(-E^(-2*x) + E^(2*x)),x]

[Out]

-Log[E^x] + Log[-1 + E^x]/2 + Log[1 + E^x]/2 + Log[1 + E^(2*x)]/2

________________________________________________________________________________________

Maple [A]
time = 0.02, size = 30, normalized size = 1.67

method result size
risch \(x +\frac {\ln \left ({\mathrm e}^{-4 x}-1\right )}{2}\) \(12\)
norman \(x +\frac {\ln \left (-1+{\mathrm e}^{-2 x}\right )}{2}+\frac {\ln \left ({\mathrm e}^{-2 x}+1\right )}{2}\) \(21\)
default \(\frac {\ln \left (1+{\mathrm e}^{x}\right )}{2}-\ln \left ({\mathrm e}^{x}\right )+\frac {\ln \left (-1+{\mathrm e}^{x}\right )}{2}+\frac {\ln \left (1+{\mathrm e}^{2 x}\right )}{2}\) \(30\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-2*x)+exp(2*x))/(-1/exp(2*x)+exp(2*x)),x,method=_RETURNVERBOSE)

[Out]

1/2*ln(1+exp(x))-ln(exp(x))+1/2*ln(-1+exp(x))+1/2*ln(1+exp(x)^2)

________________________________________________________________________________________

Maxima [A]
time = 0.30, size = 14, normalized size = 0.78 \begin {gather*} \frac {1}{2} \, \log \left (e^{\left (2 \, x\right )} - e^{\left (-2 \, x\right )}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(-2*x)+exp(2*x))/(-1/exp(2*x)+exp(2*x)),x, algorithm="maxima")

[Out]

1/2*log(e^(2*x) - e^(-2*x))

________________________________________________________________________________________

Fricas [A]
time = 0.38, size = 13, normalized size = 0.72 \begin {gather*} -x + \frac {1}{2} \, \log \left (e^{\left (4 \, x\right )} - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(-2*x)+exp(2*x))/(-1/exp(2*x)+exp(2*x)),x, algorithm="fricas")

[Out]

-x + 1/2*log(e^(4*x) - 1)

________________________________________________________________________________________

Sympy [A]
time = 0.03, size = 12, normalized size = 0.67 \begin {gather*} x + \frac {\log {\left (-1 + e^{- 4 x} \right )}}{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(-2*x)+exp(2*x))/(-1/exp(2*x)+exp(2*x)),x)

[Out]

x + log(-1 + exp(-4*x))/2

________________________________________________________________________________________

Giac [A]
time = 4.93, size = 14, normalized size = 0.78 \begin {gather*} -x + \frac {1}{2} \, \log \left ({\left | e^{\left (4 \, x\right )} - 1 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(-2*x)+exp(2*x))/(-1/exp(2*x)+exp(2*x)),x, algorithm="giac")

[Out]

-x + 1/2*log(abs(e^(4*x) - 1))

________________________________________________________________________________________

Mupad [B]
time = 3.34, size = 22, normalized size = 1.22 \begin {gather*} \frac {\ln \left ({\mathrm {e}}^{2\,x}-1\right )}{2}-x+\frac {\ln \left ({\mathrm {e}}^{2\,x}+1\right )}{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(-2*x) + exp(2*x))/(exp(-2*x) - exp(2*x)),x)

[Out]

log(exp(2*x) - 1)/2 - x + log(exp(2*x) + 1)/2

________________________________________________________________________________________