3.1.43 \(\int \frac {1}{\sqrt {\csc ^2(x)}} \, dx\) [43]

Optimal. Leaf size=12 \[ -\frac {\cot (x)}{\sqrt {\csc ^2(x)}} \]

[Out]

-cot(x)/(csc(x)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 12, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {4207, 197} \begin {gather*} -\frac {\cot (x)}{\sqrt {\csc ^2(x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[Csc[x]^2],x]

[Out]

-(Cot[x]/Sqrt[Csc[x]^2])

Rule 197

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^(p + 1)/a), x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 4207

Int[((b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[b*(ff/
f), Subst[Int[(b + b*ff^2*x^2)^(p - 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{b, e, f, p}, x] &&  !IntegerQ[p
]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {\csc ^2(x)}} \, dx &=-\text {Subst}\left (\int \frac {1}{\left (1+x^2\right )^{3/2}} \, dx,x,\cot (x)\right )\\ &=-\frac {\cot (x)}{\sqrt {\csc ^2(x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 12, normalized size = 1.00 \begin {gather*} -\frac {\cot (x)}{\sqrt {\csc ^2(x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[Csc[x]^2],x]

[Out]

-(Cot[x]/Sqrt[Csc[x]^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(25\) vs. \(2(10)=20\).
time = 0.08, size = 26, normalized size = 2.17

method result size
default \(\frac {\sin \left (x \right ) \sqrt {4}}{2 \sqrt {-\frac {1}{\cos ^{2}\left (x \right )-1}}\, \left (\cos \left (x \right )-1\right )}\) \(26\)
risch \(-\frac {i {\mathrm e}^{2 i x}}{2 \sqrt {-\frac {{\mathrm e}^{2 i x}}{\left ({\mathrm e}^{2 i x}-1\right )^{2}}}\, \left ({\mathrm e}^{2 i x}-1\right )}-\frac {i}{2 \left ({\mathrm e}^{2 i x}-1\right ) \sqrt {-\frac {{\mathrm e}^{2 i x}}{\left ({\mathrm e}^{2 i x}-1\right )^{2}}}}\) \(67\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(csc(x)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2*sin(x)/(-1/(cos(x)^2-1))^(1/2)/(cos(x)-1)*4^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 10, normalized size = 0.83 \begin {gather*} -\frac {1}{\sqrt {\tan \left (x\right )^{2} + 1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(csc(x)^2)^(1/2),x, algorithm="maxima")

[Out]

-1/sqrt(tan(x)^2 + 1)

________________________________________________________________________________________

Fricas [A]
time = 3.83, size = 4, normalized size = 0.33 \begin {gather*} -\cos \left (x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(csc(x)^2)^(1/2),x, algorithm="fricas")

[Out]

-cos(x)

________________________________________________________________________________________

Sympy [A]
time = 0.16, size = 12, normalized size = 1.00 \begin {gather*} - \frac {\cot {\left (x \right )}}{\sqrt {\csc ^{2}{\left (x \right )}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(csc(x)**2)**(1/2),x)

[Out]

-cot(x)/sqrt(csc(x)**2)

________________________________________________________________________________________

Giac [A]
time = 0.44, size = 11, normalized size = 0.92 \begin {gather*} -\cos \left (x\right ) \mathrm {sgn}\left (\sin \left (x\right )\right ) + \mathrm {sgn}\left (\sin \left (x\right )\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(csc(x)^2)^(1/2),x, algorithm="giac")

[Out]

-cos(x)*sgn(sin(x)) + sgn(sin(x))

________________________________________________________________________________________

Mupad [B]
time = 0.17, size = 12, normalized size = 1.00 \begin {gather*} -\frac {\sin \left (2\,x\right )}{2\,\sqrt {{\sin \left (x\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1/sin(x)^2)^(1/2),x)

[Out]

-sin(2*x)/(2*(sin(x)^2)^(1/2))

________________________________________________________________________________________