3.2.28 \(\int \frac {\text {ArcSin}(a+b x)}{x^3} \, dx\) [128]

Optimal. Leaf size=103 \[ -\frac {b \sqrt {1-(a+b x)^2}}{2 \left (1-a^2\right ) x}-\frac {\text {ArcSin}(a+b x)}{2 x^2}-\frac {a b^2 \tanh ^{-1}\left (\frac {1-a (a+b x)}{\sqrt {1-a^2} \sqrt {1-(a+b x)^2}}\right )}{2 \left (1-a^2\right )^{3/2}} \]

[Out]

-1/2*arcsin(b*x+a)/x^2-1/2*a*b^2*arctanh((1-a*(b*x+a))/(-a^2+1)^(1/2)/(1-(b*x+a)^2)^(1/2))/(-a^2+1)^(3/2)-1/2*
b*(1-(b*x+a)^2)^(1/2)/(-a^2+1)/x

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {4889, 4827, 745, 739, 212} \begin {gather*} -\frac {a b^2 \tanh ^{-1}\left (\frac {1-a (a+b x)}{\sqrt {1-a^2} \sqrt {1-(a+b x)^2}}\right )}{2 \left (1-a^2\right )^{3/2}}-\frac {b \sqrt {1-(a+b x)^2}}{2 \left (1-a^2\right ) x}-\frac {\text {ArcSin}(a+b x)}{2 x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[ArcSin[a + b*x]/x^3,x]

[Out]

-1/2*(b*Sqrt[1 - (a + b*x)^2])/((1 - a^2)*x) - ArcSin[a + b*x]/(2*x^2) - (a*b^2*ArcTanh[(1 - a*(a + b*x))/(Sqr
t[1 - a^2]*Sqrt[1 - (a + b*x)^2])])/(2*(1 - a^2)^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 739

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 745

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m + 1)*((a + c*x^2)^(p
 + 1)/((m + 1)*(c*d^2 + a*e^2))), x] + Dist[c*(d/(c*d^2 + a*e^2)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x]
 /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m + 2*p + 3, 0]

Rule 4827

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*ArcSin[c*x])^n/(e*(m + 1))), x] - Dist[b*c*(n/(e*(m + 1))), Int[(d + e*x)^(m + 1)*((a + b*ArcSin[c*x])^(
n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4889

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rubi steps

\begin {align*} \int \frac {\sin ^{-1}(a+b x)}{x^3} \, dx &=\frac {\text {Subst}\left (\int \frac {\sin ^{-1}(x)}{\left (-\frac {a}{b}+\frac {x}{b}\right )^3} \, dx,x,a+b x\right )}{b}\\ &=-\frac {\sin ^{-1}(a+b x)}{2 x^2}+\frac {1}{2} \text {Subst}\left (\int \frac {1}{\left (-\frac {a}{b}+\frac {x}{b}\right )^2 \sqrt {1-x^2}} \, dx,x,a+b x\right )\\ &=-\frac {b \sqrt {1-(a+b x)^2}}{2 \left (1-a^2\right ) x}-\frac {\sin ^{-1}(a+b x)}{2 x^2}+\frac {(a b) \text {Subst}\left (\int \frac {1}{\left (-\frac {a}{b}+\frac {x}{b}\right ) \sqrt {1-x^2}} \, dx,x,a+b x\right )}{2 \left (1-a^2\right )}\\ &=-\frac {b \sqrt {1-(a+b x)^2}}{2 \left (1-a^2\right ) x}-\frac {\sin ^{-1}(a+b x)}{2 x^2}-\frac {(a b) \text {Subst}\left (\int \frac {1}{\frac {1}{b^2}-\frac {a^2}{b^2}-x^2} \, dx,x,\frac {\frac {1}{b}-\frac {a (a+b x)}{b}}{\sqrt {1-(a+b x)^2}}\right )}{2 \left (1-a^2\right )}\\ &=-\frac {b \sqrt {1-(a+b x)^2}}{2 \left (1-a^2\right ) x}-\frac {\sin ^{-1}(a+b x)}{2 x^2}-\frac {a b^2 \tanh ^{-1}\left (\frac {1-a (a+b x)}{\sqrt {1-a^2} \sqrt {1-(a+b x)^2}}\right )}{2 \left (1-a^2\right )^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.14, size = 125, normalized size = 1.21 \begin {gather*} -\frac {\text {ArcSin}(a+b x)+\frac {b x \left (\sqrt {1-a^2} \sqrt {1-a^2-2 a b x-b^2 x^2}-a b x \log (x)+a b x \log \left (1-a^2-a b x+\sqrt {1-a^2} \sqrt {1-a^2-2 a b x-b^2 x^2}\right )\right )}{\left (1-a^2\right )^{3/2}}}{2 x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[ArcSin[a + b*x]/x^3,x]

[Out]

-1/2*(ArcSin[a + b*x] + (b*x*(Sqrt[1 - a^2]*Sqrt[1 - a^2 - 2*a*b*x - b^2*x^2] - a*b*x*Log[x] + a*b*x*Log[1 - a
^2 - a*b*x + Sqrt[1 - a^2]*Sqrt[1 - a^2 - 2*a*b*x - b^2*x^2]]))/(1 - a^2)^(3/2))/x^2

________________________________________________________________________________________

Maple [A]
time = 0.01, size = 124, normalized size = 1.20

method result size
derivativedivides \(b^{2} \left (-\frac {\arcsin \left (b x +a \right )}{2 b^{2} x^{2}}-\frac {\sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}{2 \left (-a^{2}+1\right ) b x}-\frac {a \ln \left (\frac {-2 a^{2}+2-2 a b x +2 \sqrt {-a^{2}+1}\, \sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}{b x}\right )}{2 \left (-a^{2}+1\right )^{\frac {3}{2}}}\right )\) \(124\)
default \(b^{2} \left (-\frac {\arcsin \left (b x +a \right )}{2 b^{2} x^{2}}-\frac {\sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}{2 \left (-a^{2}+1\right ) b x}-\frac {a \ln \left (\frac {-2 a^{2}+2-2 a b x +2 \sqrt {-a^{2}+1}\, \sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}{b x}\right )}{2 \left (-a^{2}+1\right )^{\frac {3}{2}}}\right )\) \(124\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arcsin(b*x+a)/x^3,x,method=_RETURNVERBOSE)

[Out]

b^2*(-1/2*arcsin(b*x+a)/b^2/x^2-1/2/(-a^2+1)/b/x*(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)-1/2*a/(-a^2+1)^(3/2)*ln((-2*a^
2+2-2*a*b*x+2*(-a^2+1)^(1/2)*(-b^2*x^2-2*a*b*x-a^2+1)^(1/2))/b/x))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsin(b*x+a)/x^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a-1>0)', see `assume?` for mor
e details)Is

________________________________________________________________________________________

Fricas [A]
time = 3.45, size = 325, normalized size = 3.16 \begin {gather*} \left [-\frac {\sqrt {-a^{2} + 1} a b^{2} x^{2} \log \left (\frac {{\left (2 \, a^{2} - 1\right )} b^{2} x^{2} + 2 \, a^{4} + 4 \, {\left (a^{3} - a\right )} b x - 2 \, \sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} {\left (a b x + a^{2} - 1\right )} \sqrt {-a^{2} + 1} - 4 \, a^{2} + 2}{x^{2}}\right ) - 2 \, \sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} {\left (a^{2} - 1\right )} b x + 2 \, {\left (a^{4} - 2 \, a^{2} + 1\right )} \arcsin \left (b x + a\right )}{4 \, {\left (a^{4} - 2 \, a^{2} + 1\right )} x^{2}}, -\frac {\sqrt {a^{2} - 1} a b^{2} x^{2} \arctan \left (\frac {\sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} {\left (a b x + a^{2} - 1\right )} \sqrt {a^{2} - 1}}{{\left (a^{2} - 1\right )} b^{2} x^{2} + a^{4} + 2 \, {\left (a^{3} - a\right )} b x - 2 \, a^{2} + 1}\right ) - \sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} {\left (a^{2} - 1\right )} b x + {\left (a^{4} - 2 \, a^{2} + 1\right )} \arcsin \left (b x + a\right )}{2 \, {\left (a^{4} - 2 \, a^{2} + 1\right )} x^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsin(b*x+a)/x^3,x, algorithm="fricas")

[Out]

[-1/4*(sqrt(-a^2 + 1)*a*b^2*x^2*log(((2*a^2 - 1)*b^2*x^2 + 2*a^4 + 4*(a^3 - a)*b*x - 2*sqrt(-b^2*x^2 - 2*a*b*x
 - a^2 + 1)*(a*b*x + a^2 - 1)*sqrt(-a^2 + 1) - 4*a^2 + 2)/x^2) - 2*sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*(a^2 - 1
)*b*x + 2*(a^4 - 2*a^2 + 1)*arcsin(b*x + a))/((a^4 - 2*a^2 + 1)*x^2), -1/2*(sqrt(a^2 - 1)*a*b^2*x^2*arctan(sqr
t(-b^2*x^2 - 2*a*b*x - a^2 + 1)*(a*b*x + a^2 - 1)*sqrt(a^2 - 1)/((a^2 - 1)*b^2*x^2 + a^4 + 2*(a^3 - a)*b*x - 2
*a^2 + 1)) - sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*(a^2 - 1)*b*x + (a^4 - 2*a^2 + 1)*arcsin(b*x + a))/((a^4 - 2*a
^2 + 1)*x^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {asin}{\left (a + b x \right )}}{x^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(asin(b*x+a)/x**3,x)

[Out]

Integral(asin(a + b*x)/x**3, x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 243 vs. \(2 (87) = 174\).
time = 0.42, size = 243, normalized size = 2.36 \begin {gather*} -{\left (\frac {a b^{2} \arctan \left (\frac {\frac {{\left (\sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} {\left | b \right |} + b\right )} a}{b^{2} x + a b} - 1}{\sqrt {a^{2} - 1}}\right )}{{\left (a^{2} {\left | b \right |} - {\left | b \right |}\right )} \sqrt {a^{2} - 1}} - \frac {a b^{2} - \frac {{\left (\sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} {\left | b \right |} + b\right )} b^{2}}{b^{2} x + a b}}{{\left (a^{3} {\left | b \right |} - a {\left | b \right |}\right )} {\left (\frac {{\left (\sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} {\left | b \right |} + b\right )}^{2} a}{{\left (b^{2} x + a b\right )}^{2}} + a - \frac {2 \, {\left (\sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} {\left | b \right |} + b\right )}}{b^{2} x + a b}\right )}}\right )} b - \frac {\arcsin \left (b x + a\right )}{2 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsin(b*x+a)/x^3,x, algorithm="giac")

[Out]

-(a*b^2*arctan(((sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)*a/(b^2*x + a*b) - 1)/sqrt(a^2 - 1))/((a^2*abs(
b) - abs(b))*sqrt(a^2 - 1)) - (a*b^2 - (sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)*b^2/(b^2*x + a*b))/((a^
3*abs(b) - a*abs(b))*((sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^2*a/(b^2*x + a*b)^2 + a - 2*(sqrt(-b^2*x
^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)/(b^2*x + a*b))))*b - 1/2*arcsin(b*x + a)/x^2

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\mathrm {asin}\left (a+b\,x\right )}{x^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(asin(a + b*x)/x^3,x)

[Out]

int(asin(a + b*x)/x^3, x)

________________________________________________________________________________________