3.2.63 \(\int \frac {x^2}{\sqrt {a+b \text {ArcSin}(c+d x)}} \, dx\) [163]

Optimal. Leaf size=440 \[ \frac {\sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d^3}+\frac {c^2 \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{\sqrt {b} d^3}-\frac {\sqrt {\frac {\pi }{6}} \cos \left (\frac {3 a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d^3}-\frac {c \sqrt {\pi } \cos \left (\frac {2 a}{b}\right ) S\left (\frac {2 \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{\sqrt {b} d^3}+\frac {\sqrt {\frac {\pi }{2}} S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{2 \sqrt {b} d^3}+\frac {c^2 \sqrt {2 \pi } S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{\sqrt {b} d^3}+\frac {c \sqrt {\pi } \text {FresnelC}\left (\frac {2 \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right ) \sin \left (\frac {2 a}{b}\right )}{\sqrt {b} d^3}-\frac {\sqrt {\frac {\pi }{6}} S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{2 \sqrt {b} d^3} \]

[Out]

-1/12*cos(3*a/b)*FresnelC(6^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*6^(1/2)*Pi^(1/2)/d^3/b^(1/2)-1/1
2*FresnelS(6^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(3*a/b)*6^(1/2)*Pi^(1/2)/d^3/b^(1/2)+1/4*cos
(a/b)*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/d^3/b^(1/2)+1/4*FresnelS(2
^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2)/d^3/b^(1/2)-c*cos(2*a/b)*FresnelS
(2*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2)/Pi^(1/2))*Pi^(1/2)/d^3/b^(1/2)+c*FresnelC(2*(a+b*arcsin(d*x+c))^(1/2)/b^(
1/2)/Pi^(1/2))*sin(2*a/b)*Pi^(1/2)/d^3/b^(1/2)+c^2*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2
)/b^(1/2))*2^(1/2)*Pi^(1/2)/d^3/b^(1/2)+c^2*FresnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(a
/b)*2^(1/2)*Pi^(1/2)/d^3/b^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.78, antiderivative size = 440, normalized size of antiderivative = 1.00, number of steps used = 20, number of rules used = 9, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {4889, 4831, 6873, 6874, 3435, 3433, 3432, 3434, 4670} \begin {gather*} \frac {\sqrt {2 \pi } c^2 \cos \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{\sqrt {b} d^3}+\frac {\sqrt {2 \pi } c^2 \sin \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{\sqrt {b} d^3}+\frac {\sqrt {\pi } c \sin \left (\frac {2 a}{b}\right ) \text {FresnelC}\left (\frac {2 \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {\pi } \sqrt {b}}\right )}{\sqrt {b} d^3}+\frac {\sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d^3}-\frac {\sqrt {\frac {\pi }{6}} \cos \left (\frac {3 a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d^3}+\frac {\sqrt {\frac {\pi }{2}} \sin \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d^3}-\frac {\sqrt {\frac {\pi }{6}} \sin \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d^3}-\frac {\sqrt {\pi } c \cos \left (\frac {2 a}{b}\right ) S\left (\frac {2 \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{\sqrt {b} d^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/Sqrt[a + b*ArcSin[c + d*x]],x]

[Out]

(Sqrt[Pi/2]*Cos[a/b]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]])/(2*Sqrt[b]*d^3) + (c^2*Sqrt[2
*Pi]*Cos[a/b]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]])/(Sqrt[b]*d^3) - (Sqrt[Pi/6]*Cos[(3*a
)/b]*FresnelC[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]])/(2*Sqrt[b]*d^3) - (c*Sqrt[Pi]*Cos[(2*a)/b]*Fr
esnelS[(2*Sqrt[a + b*ArcSin[c + d*x]])/(Sqrt[b]*Sqrt[Pi])])/(Sqrt[b]*d^3) + (Sqrt[Pi/2]*FresnelS[(Sqrt[2/Pi]*S
qrt[a + b*ArcSin[c + d*x]])/Sqrt[b]]*Sin[a/b])/(2*Sqrt[b]*d^3) + (c^2*Sqrt[2*Pi]*FresnelS[(Sqrt[2/Pi]*Sqrt[a +
 b*ArcSin[c + d*x]])/Sqrt[b]]*Sin[a/b])/(Sqrt[b]*d^3) + (c*Sqrt[Pi]*FresnelC[(2*Sqrt[a + b*ArcSin[c + d*x]])/(
Sqrt[b]*Sqrt[Pi])]*Sin[(2*a)/b])/(Sqrt[b]*d^3) - (Sqrt[Pi/6]*FresnelS[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c + d*x]])
/Sqrt[b]]*Sin[(3*a)/b])/(2*Sqrt[b]*d^3)

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3434

Int[Sin[(c_) + (d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Dist[Sin[c], Int[Cos[d*(e + f*x)^2], x], x] + Dist[
Cos[c], Int[Sin[d*(e + f*x)^2], x], x] /; FreeQ[{c, d, e, f}, x]

Rule 3435

Int[Cos[(c_) + (d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Dist[Cos[c], Int[Cos[d*(e + f*x)^2], x], x] - Dist[
Sin[c], Int[Sin[d*(e + f*x)^2], x], x] /; FreeQ[{c, d, e, f}, x]

Rule 4670

Int[Cos[w_]^(q_.)*Sin[v_]^(p_.), x_Symbol] :> Int[ExpandTrigReduce[Sin[v]^p*Cos[w]^q, x], x] /; IGtQ[p, 0] &&
IGtQ[q, 0] && ((PolynomialQ[v, x] && PolynomialQ[w, x]) || (BinomialQ[{v, w}, x] && IndependentQ[Cancel[v/w],
x]))

Rule 4831

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[I
nt[(a + b*x)^n*Cos[x]*(c*d + e*Sin[x])^m, x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[m, 0
]

Rule 4889

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rule 6873

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {align*} \int \frac {x^2}{\sqrt {a+b \sin ^{-1}(c+d x)}} \, dx &=\frac {\text {Subst}\left (\int \frac {\left (-\frac {c}{d}+\frac {x}{d}\right )^2}{\sqrt {a+b \sin ^{-1}(x)}} \, dx,x,c+d x\right )}{d}\\ &=\frac {\text {Subst}\left (\int \frac {\cos (x) \left (-\frac {c}{d}+\frac {\sin (x)}{d}\right )^2}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{d}\\ &=\frac {2 \text {Subst}\left (\int \cos \left (\frac {a-x^2}{b}\right ) \left (c+\sin \left (\frac {a-x^2}{b}\right )\right )^2 \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b d^3}\\ &=\frac {2 \text {Subst}\left (\int \cos \left (\frac {a}{b}-\frac {x^2}{b}\right ) \left (c+\sin \left (\frac {a-x^2}{b}\right )\right )^2 \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b d^3}\\ &=\frac {2 \text {Subst}\left (\int \left (c^2 \cos \left (\frac {a}{b}-\frac {x^2}{b}\right )+c \sin \left (\frac {2 a}{b}-\frac {2 x^2}{b}\right )+\cos \left (\frac {a}{b}-\frac {x^2}{b}\right ) \sin ^2\left (\frac {a}{b}-\frac {x^2}{b}\right )\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b d^3}\\ &=\frac {2 \text {Subst}\left (\int \cos \left (\frac {a}{b}-\frac {x^2}{b}\right ) \sin ^2\left (\frac {a}{b}-\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b d^3}+\frac {(2 c) \text {Subst}\left (\int \sin \left (\frac {2 a}{b}-\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b d^3}+\frac {\left (2 c^2\right ) \text {Subst}\left (\int \cos \left (\frac {a}{b}-\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b d^3}\\ &=\frac {2 \text {Subst}\left (\int \left (-\frac {1}{4} \cos \left (\frac {3 a}{b}-\frac {3 x^2}{b}\right )+\frac {1}{4} \cos \left (\frac {a}{b}-\frac {x^2}{b}\right )\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b d^3}+\frac {\left (2 c^2 \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b d^3}-\frac {\left (2 c \cos \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b d^3}+\frac {\left (2 c^2 \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b d^3}+\frac {\left (2 c \sin \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b d^3}\\ &=\frac {c^2 \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{\sqrt {b} d^3}-\frac {c \sqrt {\pi } \cos \left (\frac {2 a}{b}\right ) S\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{\sqrt {b} d^3}+\frac {c^2 \sqrt {2 \pi } S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{\sqrt {b} d^3}+\frac {c \sqrt {\pi } C\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right ) \sin \left (\frac {2 a}{b}\right )}{\sqrt {b} d^3}-\frac {\text {Subst}\left (\int \cos \left (\frac {3 a}{b}-\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{2 b d^3}+\frac {\text {Subst}\left (\int \cos \left (\frac {a}{b}-\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{2 b d^3}\\ &=\frac {c^2 \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{\sqrt {b} d^3}-\frac {c \sqrt {\pi } \cos \left (\frac {2 a}{b}\right ) S\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{\sqrt {b} d^3}+\frac {c^2 \sqrt {2 \pi } S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{\sqrt {b} d^3}+\frac {c \sqrt {\pi } C\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right ) \sin \left (\frac {2 a}{b}\right )}{\sqrt {b} d^3}+\frac {\cos \left (\frac {a}{b}\right ) \text {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{2 b d^3}-\frac {\cos \left (\frac {3 a}{b}\right ) \text {Subst}\left (\int \cos \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{2 b d^3}+\frac {\sin \left (\frac {a}{b}\right ) \text {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{2 b d^3}-\frac {\sin \left (\frac {3 a}{b}\right ) \text {Subst}\left (\int \sin \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{2 b d^3}\\ &=\frac {\sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d^3}+\frac {c^2 \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{\sqrt {b} d^3}-\frac {\sqrt {\frac {\pi }{6}} \cos \left (\frac {3 a}{b}\right ) C\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d^3}-\frac {c \sqrt {\pi } \cos \left (\frac {2 a}{b}\right ) S\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{\sqrt {b} d^3}+\frac {\sqrt {\frac {\pi }{2}} S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{2 \sqrt {b} d^3}+\frac {c^2 \sqrt {2 \pi } S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{\sqrt {b} d^3}+\frac {c \sqrt {\pi } C\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right ) \sin \left (\frac {2 a}{b}\right )}{\sqrt {b} d^3}-\frac {\sqrt {\frac {\pi }{6}} S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{2 \sqrt {b} d^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.72, size = 335, normalized size = 0.76 \begin {gather*} \frac {\sqrt {\frac {1}{b}} \sqrt {\pi } \left (3 \sqrt {2} \left (1+4 c^2\right ) \cos \left (\frac {a}{b}\right ) \text {FresnelC}\left (\sqrt {\frac {1}{b}} \sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}\right )-\sqrt {6} \cos \left (\frac {3 a}{b}\right ) \text {FresnelC}\left (\sqrt {\frac {1}{b}} \sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}\right )-12 c \cos \left (\frac {2 a}{b}\right ) S\left (\frac {2 \sqrt {\frac {1}{b}} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {\pi }}\right )+3 \sqrt {2} S\left (\sqrt {\frac {1}{b}} \sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}\right ) \sin \left (\frac {a}{b}\right )+12 \sqrt {2} c^2 S\left (\sqrt {\frac {1}{b}} \sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}\right ) \sin \left (\frac {a}{b}\right )+12 c \text {FresnelC}\left (\frac {2 \sqrt {\frac {1}{b}} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {\pi }}\right ) \sin \left (\frac {2 a}{b}\right )-\sqrt {6} S\left (\sqrt {\frac {1}{b}} \sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}\right ) \sin \left (\frac {3 a}{b}\right )\right )}{12 d^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/Sqrt[a + b*ArcSin[c + d*x]],x]

[Out]

(Sqrt[b^(-1)]*Sqrt[Pi]*(3*Sqrt[2]*(1 + 4*c^2)*Cos[a/b]*FresnelC[Sqrt[b^(-1)]*Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c +
d*x]]] - Sqrt[6]*Cos[(3*a)/b]*FresnelC[Sqrt[b^(-1)]*Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c + d*x]]] - 12*c*Cos[(2*a)/b
]*FresnelS[(2*Sqrt[b^(-1)]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[Pi]] + 3*Sqrt[2]*FresnelS[Sqrt[b^(-1)]*Sqrt[2/Pi]
*Sqrt[a + b*ArcSin[c + d*x]]]*Sin[a/b] + 12*Sqrt[2]*c^2*FresnelS[Sqrt[b^(-1)]*Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c +
 d*x]]]*Sin[a/b] + 12*c*FresnelC[(2*Sqrt[b^(-1)]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[Pi]]*Sin[(2*a)/b] - Sqrt[6]
*FresnelS[Sqrt[b^(-1)]*Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c + d*x]]]*Sin[(3*a)/b]))/(12*d^3)

________________________________________________________________________________________

Maple [A]
time = 0.58, size = 428, normalized size = 0.97

method result size
default \(-\frac {\sqrt {\pi }\, \sqrt {2}\, \sqrt {-\frac {3}{b}}\, \left (4 \cos \left (\frac {a}{b}\right ) \FresnelC \left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {-\frac {1}{b}}\, \sqrt {-\frac {3}{b}}\, b \,c^{2}-4 \sin \left (\frac {a}{b}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {-\frac {1}{b}}\, \sqrt {-\frac {3}{b}}\, b \,c^{2}+2 \cos \left (\frac {2 a}{b}\right ) \mathrm {S}\left (\frac {2 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {2}{b}}\, b}\right ) \sqrt {-\frac {2}{b}}\, \sqrt {-\frac {3}{b}}\, b c +2 \sin \left (\frac {2 a}{b}\right ) \FresnelC \left (\frac {2 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {2}{b}}\, b}\right ) \sqrt {-\frac {2}{b}}\, \sqrt {-\frac {3}{b}}\, b c +\cos \left (\frac {a}{b}\right ) \FresnelC \left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {-\frac {1}{b}}\, \sqrt {-\frac {3}{b}}\, b -\sin \left (\frac {a}{b}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {-\frac {1}{b}}\, \sqrt {-\frac {3}{b}}\, b +\cos \left (\frac {3 a}{b}\right ) \FresnelC \left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right )-\sin \left (\frac {3 a}{b}\right ) \mathrm {S}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right )\right )}{12 d^{3}}\) \(428\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a+b*arcsin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/12/d^3*Pi^(1/2)*2^(1/2)*(-3/b)^(1/2)*(4*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))
^(1/2)/b)*(-1/b)^(1/2)*(-3/b)^(1/2)*b*c^2-4*sin(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c)
)^(1/2)/b)*(-1/b)^(1/2)*(-3/b)^(1/2)*b*c^2+2*cos(2*a/b)*FresnelS(2*2^(1/2)/Pi^(1/2)/(-2/b)^(1/2)*(a+b*arcsin(d
*x+c))^(1/2)/b)*(-2/b)^(1/2)*(-3/b)^(1/2)*b*c+2*sin(2*a/b)*FresnelC(2*2^(1/2)/Pi^(1/2)/(-2/b)^(1/2)*(a+b*arcsi
n(d*x+c))^(1/2)/b)*(-2/b)^(1/2)*(-3/b)^(1/2)*b*c+cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d
*x+c))^(1/2)/b)*(-1/b)^(1/2)*(-3/b)^(1/2)*b-sin(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c)
)^(1/2)/b)*(-1/b)^(1/2)*(-3/b)^(1/2)*b+cos(3*a/b)*FresnelC(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arcsin(d*x+c))
^(1/2)/b)-sin(3*a/b)*FresnelS(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arcsin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(x^2/sqrt(b*arcsin(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arcsin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2}}{\sqrt {a + b \operatorname {asin}{\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(a+b*asin(d*x+c))**(1/2),x)

[Out]

Integral(x**2/sqrt(a + b*asin(c + d*x)), x)

________________________________________________________________________________________

Giac [C] Result contains complex when optimal does not.
time = 0.69, size = 646, normalized size = 1.47 \begin {gather*} -\frac {\sqrt {\pi } c^{2} \operatorname {erf}\left (-\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (\frac {i \, a}{b}\right )}}{d^{3} {\left (\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} - \frac {\sqrt {\pi } c^{2} \operatorname {erf}\left (\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (-\frac {i \, a}{b}\right )}}{d^{3} {\left (-\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} - \frac {i \, \sqrt {\pi } c \operatorname {erf}\left (-\frac {\sqrt {b \arcsin \left (d x + c\right ) + a}}{\sqrt {b}} + \frac {i \, \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {b}}{{\left | b \right |}}\right ) e^{\left (-\frac {2 i \, a}{b}\right )}}{2 \, d^{3} {\left (\sqrt {b} - \frac {i \, b^{\frac {3}{2}}}{{\left | b \right |}}\right )}} + \frac {i \, \sqrt {\pi } c \operatorname {erf}\left (-\frac {\sqrt {b \arcsin \left (d x + c\right ) + a}}{\sqrt {b}} - \frac {i \, \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {b}}{{\left | b \right |}}\right ) e^{\left (\frac {2 i \, a}{b}\right )}}{2 \, \sqrt {b} d^{3} {\left (\frac {i \, b}{{\left | b \right |}} + 1\right )}} + \frac {\sqrt {\pi } \operatorname {erf}\left (-\frac {\sqrt {6} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {b}} - \frac {i \, \sqrt {6} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {b}}{2 \, {\left | b \right |}}\right ) e^{\left (\frac {3 i \, a}{b}\right )}}{4 \, {\left (\sqrt {6} \sqrt {b} + \frac {i \, \sqrt {6} b^{\frac {3}{2}}}{{\left | b \right |}}\right )} d^{3}} - \frac {\sqrt {\pi } \operatorname {erf}\left (-\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (\frac {i \, a}{b}\right )}}{4 \, d^{3} {\left (\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} - \frac {\sqrt {\pi } \operatorname {erf}\left (\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (-\frac {i \, a}{b}\right )}}{4 \, d^{3} {\left (-\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} + \frac {\sqrt {\pi } \operatorname {erf}\left (-\frac {\sqrt {6} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {b}} + \frac {i \, \sqrt {6} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {b}}{2 \, {\left | b \right |}}\right ) e^{\left (-\frac {3 i \, a}{b}\right )}}{4 \, {\left (\sqrt {6} \sqrt {b} - \frac {i \, \sqrt {6} b^{\frac {3}{2}}}{{\left | b \right |}}\right )} d^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arcsin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-sqrt(pi)*c^2*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c)
 + a)*sqrt(abs(b))/b)*e^(I*a/b)/(d^3*(I*sqrt(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) - sqrt(pi)*c^2*erf(1/2
*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*
e^(-I*a/b)/(d^3*(-I*sqrt(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) - 1/2*I*sqrt(pi)*c*erf(-sqrt(b*arcsin(d*x
+ c) + a)/sqrt(b) + I*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(-2*I*a/b)/(d^3*(sqrt(b) - I*b^(3/2)/abs(b
))) + 1/2*I*sqrt(pi)*c*erf(-sqrt(b*arcsin(d*x + c) + a)/sqrt(b) - I*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b)
)*e^(2*I*a/b)/(sqrt(b)*d^3*(I*b/abs(b) + 1)) + 1/4*sqrt(pi)*erf(-1/2*sqrt(6)*sqrt(b*arcsin(d*x + c) + a)/sqrt(
b) - 1/2*I*sqrt(6)*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(3*I*a/b)/((sqrt(6)*sqrt(b) + I*sqrt(6)*b^(3/
2)/abs(b))*d^3) - 1/4*sqrt(pi)*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(
b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(I*a/b)/(d^3*(I*sqrt(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) - 1/4
*sqrt(pi)*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)
*sqrt(abs(b))/b)*e^(-I*a/b)/(d^3*(-I*sqrt(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) + 1/4*sqrt(pi)*erf(-1/2*s
qrt(6)*sqrt(b*arcsin(d*x + c) + a)/sqrt(b) + 1/2*I*sqrt(6)*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(-3*I
*a/b)/((sqrt(6)*sqrt(b) - I*sqrt(6)*b^(3/2)/abs(b))*d^3)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^2}{\sqrt {a+b\,\mathrm {asin}\left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a + b*asin(c + d*x))^(1/2),x)

[Out]

int(x^2/(a + b*asin(c + d*x))^(1/2), x)

________________________________________________________________________________________