3.2.74 \(\int x (a+b \text {ArcSin}(c+d x))^n \, dx\) [174]

Optimal. Leaf size=301 \[ \frac {i c e^{-\frac {i a}{b}} (a+b \text {ArcSin}(c+d x))^n \left (-\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )^{-n} \text {Gamma}\left (1+n,-\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )}{2 d^2}-\frac {i c e^{\frac {i a}{b}} (a+b \text {ArcSin}(c+d x))^n \left (\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )^{-n} \text {Gamma}\left (1+n,\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )}{2 d^2}-\frac {2^{-3-n} e^{-\frac {2 i a}{b}} (a+b \text {ArcSin}(c+d x))^n \left (-\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )^{-n} \text {Gamma}\left (1+n,-\frac {2 i (a+b \text {ArcSin}(c+d x))}{b}\right )}{d^2}-\frac {2^{-3-n} e^{\frac {2 i a}{b}} (a+b \text {ArcSin}(c+d x))^n \left (\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )^{-n} \text {Gamma}\left (1+n,\frac {2 i (a+b \text {ArcSin}(c+d x))}{b}\right )}{d^2} \]

[Out]

1/2*I*c*(a+b*arcsin(d*x+c))^n*GAMMA(1+n,-I*(a+b*arcsin(d*x+c))/b)/d^2/exp(I*a/b)/((-I*(a+b*arcsin(d*x+c))/b)^n
)-1/2*I*c*exp(I*a/b)*(a+b*arcsin(d*x+c))^n*GAMMA(1+n,I*(a+b*arcsin(d*x+c))/b)/d^2/((I*(a+b*arcsin(d*x+c))/b)^n
)-2^(-3-n)*(a+b*arcsin(d*x+c))^n*GAMMA(1+n,-2*I*(a+b*arcsin(d*x+c))/b)/d^2/exp(2*I*a/b)/((-I*(a+b*arcsin(d*x+c
))/b)^n)-2^(-3-n)*exp(2*I*a/b)*(a+b*arcsin(d*x+c))^n*GAMMA(1+n,2*I*(a+b*arcsin(d*x+c))/b)/d^2/((I*(a+b*arcsin(
d*x+c))/b)^n)

________________________________________________________________________________________

Rubi [A]
time = 0.38, antiderivative size = 301, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 9, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.643, Rules used = {4889, 4831, 6873, 12, 6874, 3388, 2212, 4491, 3389} \begin {gather*} \frac {i c e^{-\frac {i a}{b}} (a+b \text {ArcSin}(c+d x))^n \left (-\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )^{-n} \text {Gamma}\left (n+1,-\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )}{2 d^2}-\frac {2^{-n-3} e^{-\frac {2 i a}{b}} (a+b \text {ArcSin}(c+d x))^n \left (-\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )^{-n} \text {Gamma}\left (n+1,-\frac {2 i (a+b \text {ArcSin}(c+d x))}{b}\right )}{d^2}-\frac {i c e^{\frac {i a}{b}} (a+b \text {ArcSin}(c+d x))^n \left (\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )^{-n} \text {Gamma}\left (n+1,\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )}{2 d^2}-\frac {2^{-n-3} e^{\frac {2 i a}{b}} (a+b \text {ArcSin}(c+d x))^n \left (\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )^{-n} \text {Gamma}\left (n+1,\frac {2 i (a+b \text {ArcSin}(c+d x))}{b}\right )}{d^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x*(a + b*ArcSin[c + d*x])^n,x]

[Out]

((I/2)*c*(a + b*ArcSin[c + d*x])^n*Gamma[1 + n, ((-I)*(a + b*ArcSin[c + d*x]))/b])/(d^2*E^((I*a)/b)*(((-I)*(a
+ b*ArcSin[c + d*x]))/b)^n) - ((I/2)*c*E^((I*a)/b)*(a + b*ArcSin[c + d*x])^n*Gamma[1 + n, (I*(a + b*ArcSin[c +
 d*x]))/b])/(d^2*((I*(a + b*ArcSin[c + d*x]))/b)^n) - (2^(-3 - n)*(a + b*ArcSin[c + d*x])^n*Gamma[1 + n, ((-2*
I)*(a + b*ArcSin[c + d*x]))/b])/(d^2*E^(((2*I)*a)/b)*(((-I)*(a + b*ArcSin[c + d*x]))/b)^n) - (2^(-3 - n)*E^(((
2*I)*a)/b)*(a + b*ArcSin[c + d*x])^n*Gamma[1 + n, ((2*I)*(a + b*ArcSin[c + d*x]))/b])/(d^2*((I*(a + b*ArcSin[c
 + d*x]))/b)^n)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2212

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(-F^(g*(e - c*(f/d))))*((c
+ d*x)^FracPart[m]/(d*((-f)*g*(Log[F]/d))^(IntPart[m] + 1)*((-f)*g*Log[F]*((c + d*x)/d))^FracPart[m]))*Gamma[m
 + 1, ((-f)*g*(Log[F]/d))*(c + d*x)], x] /; FreeQ[{F, c, d, e, f, g, m}, x] &&  !IntegerQ[m]

Rule 3388

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 3389

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 4491

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 4831

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[I
nt[(a + b*x)^n*Cos[x]*(c*d + e*Sin[x])^m, x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[m, 0
]

Rule 4889

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rule 6873

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {align*} \int x \left (a+b \sin ^{-1}(c+d x)\right )^n \, dx &=\frac {\text {Subst}\left (\int \left (-\frac {c}{d}+\frac {x}{d}\right ) \left (a+b \sin ^{-1}(x)\right )^n \, dx,x,c+d x\right )}{d}\\ &=\frac {\text {Subst}\left (\int (a+b x)^n \cos (x) \left (-\frac {c}{d}+\frac {\sin (x)}{d}\right ) \, dx,x,\sin ^{-1}(c+d x)\right )}{d}\\ &=\frac {\text {Subst}\left (\int \frac {(a+b x)^n \cos (x) (-c+\sin (x))}{d} \, dx,x,\sin ^{-1}(c+d x)\right )}{d}\\ &=\frac {\text {Subst}\left (\int (a+b x)^n \cos (x) (-c+\sin (x)) \, dx,x,\sin ^{-1}(c+d x)\right )}{d^2}\\ &=\frac {\text {Subst}\left (\int \left (-c (a+b x)^n \cos (x)+(a+b x)^n \cos (x) \sin (x)\right ) \, dx,x,\sin ^{-1}(c+d x)\right )}{d^2}\\ &=\frac {\text {Subst}\left (\int (a+b x)^n \cos (x) \sin (x) \, dx,x,\sin ^{-1}(c+d x)\right )}{d^2}-\frac {c \text {Subst}\left (\int (a+b x)^n \cos (x) \, dx,x,\sin ^{-1}(c+d x)\right )}{d^2}\\ &=\frac {\text {Subst}\left (\int \frac {1}{2} (a+b x)^n \sin (2 x) \, dx,x,\sin ^{-1}(c+d x)\right )}{d^2}-\frac {c \text {Subst}\left (\int e^{-i x} (a+b x)^n \, dx,x,\sin ^{-1}(c+d x)\right )}{2 d^2}-\frac {c \text {Subst}\left (\int e^{i x} (a+b x)^n \, dx,x,\sin ^{-1}(c+d x)\right )}{2 d^2}\\ &=\frac {i c e^{-\frac {i a}{b}} \left (a+b \sin ^{-1}(c+d x)\right )^n \left (-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{-n} \Gamma \left (1+n,-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )}{2 d^2}-\frac {i c e^{\frac {i a}{b}} \left (a+b \sin ^{-1}(c+d x)\right )^n \left (\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{-n} \Gamma \left (1+n,\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )}{2 d^2}+\frac {\text {Subst}\left (\int (a+b x)^n \sin (2 x) \, dx,x,\sin ^{-1}(c+d x)\right )}{2 d^2}\\ &=\frac {i c e^{-\frac {i a}{b}} \left (a+b \sin ^{-1}(c+d x)\right )^n \left (-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{-n} \Gamma \left (1+n,-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )}{2 d^2}-\frac {i c e^{\frac {i a}{b}} \left (a+b \sin ^{-1}(c+d x)\right )^n \left (\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{-n} \Gamma \left (1+n,\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )}{2 d^2}+\frac {i \text {Subst}\left (\int e^{-2 i x} (a+b x)^n \, dx,x,\sin ^{-1}(c+d x)\right )}{4 d^2}-\frac {i \text {Subst}\left (\int e^{2 i x} (a+b x)^n \, dx,x,\sin ^{-1}(c+d x)\right )}{4 d^2}\\ &=\frac {i c e^{-\frac {i a}{b}} \left (a+b \sin ^{-1}(c+d x)\right )^n \left (-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{-n} \Gamma \left (1+n,-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )}{2 d^2}-\frac {i c e^{\frac {i a}{b}} \left (a+b \sin ^{-1}(c+d x)\right )^n \left (\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{-n} \Gamma \left (1+n,\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )}{2 d^2}-\frac {2^{-3-n} e^{-\frac {2 i a}{b}} \left (a+b \sin ^{-1}(c+d x)\right )^n \left (-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{-n} \Gamma \left (1+n,-\frac {2 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )}{d^2}-\frac {2^{-3-n} e^{\frac {2 i a}{b}} \left (a+b \sin ^{-1}(c+d x)\right )^n \left (\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{-n} \Gamma \left (1+n,\frac {2 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )}{d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.64, size = 372, normalized size = 1.24 \begin {gather*} \frac {2^{-3-n} (a+b \text {ArcSin}(c+d x))^n \left (\frac {(a+b \text {ArcSin}(c+d x))^2}{b^2}\right )^{-n} \left (-\left (\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )^n \cos \left (\frac {2 a}{b}\right ) \text {Gamma}\left (1+n,-\frac {2 i (a+b \text {ArcSin}(c+d x))}{b}\right )-\left (-\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )^n \cos \left (\frac {2 a}{b}\right ) \text {Gamma}\left (1+n,\frac {2 i (a+b \text {ArcSin}(c+d x))}{b}\right )+2^{2+n} c \left (-\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )^n \text {Gamma}\left (1+n,\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right ) \left (-i \cos \left (\frac {a}{b}\right )+\sin \left (\frac {a}{b}\right )\right )+2^{2+n} c \left (\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )^n \text {Gamma}\left (1+n,-\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right ) \left (i \cos \left (\frac {a}{b}\right )+\sin \left (\frac {a}{b}\right )\right )+i \left (\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )^n \text {Gamma}\left (1+n,-\frac {2 i (a+b \text {ArcSin}(c+d x))}{b}\right ) \sin \left (\frac {2 a}{b}\right )-i \left (-\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )^n \text {Gamma}\left (1+n,\frac {2 i (a+b \text {ArcSin}(c+d x))}{b}\right ) \sin \left (\frac {2 a}{b}\right )\right )}{d^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x*(a + b*ArcSin[c + d*x])^n,x]

[Out]

(2^(-3 - n)*(a + b*ArcSin[c + d*x])^n*(-(((I*(a + b*ArcSin[c + d*x]))/b)^n*Cos[(2*a)/b]*Gamma[1 + n, ((-2*I)*(
a + b*ArcSin[c + d*x]))/b]) - (((-I)*(a + b*ArcSin[c + d*x]))/b)^n*Cos[(2*a)/b]*Gamma[1 + n, ((2*I)*(a + b*Arc
Sin[c + d*x]))/b] + 2^(2 + n)*c*(((-I)*(a + b*ArcSin[c + d*x]))/b)^n*Gamma[1 + n, (I*(a + b*ArcSin[c + d*x]))/
b]*((-I)*Cos[a/b] + Sin[a/b]) + 2^(2 + n)*c*((I*(a + b*ArcSin[c + d*x]))/b)^n*Gamma[1 + n, ((-I)*(a + b*ArcSin
[c + d*x]))/b]*(I*Cos[a/b] + Sin[a/b]) + I*((I*(a + b*ArcSin[c + d*x]))/b)^n*Gamma[1 + n, ((-2*I)*(a + b*ArcSi
n[c + d*x]))/b]*Sin[(2*a)/b] - I*(((-I)*(a + b*ArcSin[c + d*x]))/b)^n*Gamma[1 + n, ((2*I)*(a + b*ArcSin[c + d*
x]))/b]*Sin[(2*a)/b]))/(d^2*((a + b*ArcSin[c + d*x])^2/b^2)^n)

________________________________________________________________________________________

Maple [F]
time = 0.45, size = 0, normalized size = 0.00 \[\int x \left (a +b \arcsin \left (d x +c \right )\right )^{n}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arcsin(d*x+c))^n,x)

[Out]

int(x*(a+b*arcsin(d*x+c))^n,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(d*x+c))^n,x, algorithm="maxima")

[Out]

integrate((b*arcsin(d*x + c) + a)^n*x, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(d*x+c))^n,x, algorithm="fricas")

[Out]

integral((b*arcsin(d*x + c) + a)^n*x, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x \left (a + b \operatorname {asin}{\left (c + d x \right )}\right )^{n}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*asin(d*x+c))**n,x)

[Out]

Integral(x*(a + b*asin(c + d*x))**n, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(d*x+c))^n,x, algorithm="giac")

[Out]

integrate((b*arcsin(d*x + c) + a)^n*x, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int x\,{\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^n \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b*asin(c + d*x))^n,x)

[Out]

int(x*(a + b*asin(c + d*x))^n, x)

________________________________________________________________________________________