3.2.100 \(\int (c e+d e x) (a+b \text {ArcSin}(c+d x))^3 \, dx\) [200]

Optimal. Leaf size=165 \[ -\frac {3 b^3 e (c+d x) \sqrt {1-(c+d x)^2}}{8 d}+\frac {3 b^3 e \text {ArcSin}(c+d x)}{8 d}-\frac {3 b^2 e (c+d x)^2 (a+b \text {ArcSin}(c+d x))}{4 d}+\frac {3 b e (c+d x) \sqrt {1-(c+d x)^2} (a+b \text {ArcSin}(c+d x))^2}{4 d}-\frac {e (a+b \text {ArcSin}(c+d x))^3}{4 d}+\frac {e (c+d x)^2 (a+b \text {ArcSin}(c+d x))^3}{2 d} \]

[Out]

3/8*b^3*e*arcsin(d*x+c)/d-3/4*b^2*e*(d*x+c)^2*(a+b*arcsin(d*x+c))/d-1/4*e*(a+b*arcsin(d*x+c))^3/d+1/2*e*(d*x+c
)^2*(a+b*arcsin(d*x+c))^3/d-3/8*b^3*e*(d*x+c)*(1-(d*x+c)^2)^(1/2)/d+3/4*b*e*(d*x+c)*(a+b*arcsin(d*x+c))^2*(1-(
d*x+c)^2)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 165, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {4889, 12, 4723, 4795, 4737, 327, 222} \begin {gather*} -\frac {3 b^2 e (c+d x)^2 (a+b \text {ArcSin}(c+d x))}{4 d}+\frac {3 b e (c+d x) \sqrt {1-(c+d x)^2} (a+b \text {ArcSin}(c+d x))^2}{4 d}+\frac {e (c+d x)^2 (a+b \text {ArcSin}(c+d x))^3}{2 d}-\frac {e (a+b \text {ArcSin}(c+d x))^3}{4 d}+\frac {3 b^3 e \text {ArcSin}(c+d x)}{8 d}-\frac {3 b^3 e (c+d x) \sqrt {1-(c+d x)^2}}{8 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)*(a + b*ArcSin[c + d*x])^3,x]

[Out]

(-3*b^3*e*(c + d*x)*Sqrt[1 - (c + d*x)^2])/(8*d) + (3*b^3*e*ArcSin[c + d*x])/(8*d) - (3*b^2*e*(c + d*x)^2*(a +
 b*ArcSin[c + d*x]))/(4*d) + (3*b*e*(c + d*x)*Sqrt[1 - (c + d*x)^2]*(a + b*ArcSin[c + d*x])^2)/(4*d) - (e*(a +
 b*ArcSin[c + d*x])^3)/(4*d) + (e*(c + d*x)^2*(a + b*ArcSin[c + d*x])^3)/(2*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcSi
n[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 -
 c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4737

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*Si
mp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c
^2*d + e, 0] && NeQ[n, -1]

Rule 4795

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[f
*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Dist[f^2*((m - 1)/(c^2*(m
+ 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + Dist[b*f*(n/(c*(m + 2*p + 1)))*S
imp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x],
 x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0]

Rule 4889

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rubi steps

\begin {align*} \int (c e+d e x) \left (a+b \sin ^{-1}(c+d x)\right )^3 \, dx &=\frac {\text {Subst}\left (\int e x \left (a+b \sin ^{-1}(x)\right )^3 \, dx,x,c+d x\right )}{d}\\ &=\frac {e \text {Subst}\left (\int x \left (a+b \sin ^{-1}(x)\right )^3 \, dx,x,c+d x\right )}{d}\\ &=\frac {e (c+d x)^2 \left (a+b \sin ^{-1}(c+d x)\right )^3}{2 d}-\frac {(3 b e) \text {Subst}\left (\int \frac {x^2 \left (a+b \sin ^{-1}(x)\right )^2}{\sqrt {1-x^2}} \, dx,x,c+d x\right )}{2 d}\\ &=\frac {3 b e (c+d x) \sqrt {1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2}{4 d}+\frac {e (c+d x)^2 \left (a+b \sin ^{-1}(c+d x)\right )^3}{2 d}-\frac {(3 b e) \text {Subst}\left (\int \frac {\left (a+b \sin ^{-1}(x)\right )^2}{\sqrt {1-x^2}} \, dx,x,c+d x\right )}{4 d}-\frac {\left (3 b^2 e\right ) \text {Subst}\left (\int x \left (a+b \sin ^{-1}(x)\right ) \, dx,x,c+d x\right )}{2 d}\\ &=-\frac {3 b^2 e (c+d x)^2 \left (a+b \sin ^{-1}(c+d x)\right )}{4 d}+\frac {3 b e (c+d x) \sqrt {1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2}{4 d}-\frac {e \left (a+b \sin ^{-1}(c+d x)\right )^3}{4 d}+\frac {e (c+d x)^2 \left (a+b \sin ^{-1}(c+d x)\right )^3}{2 d}+\frac {\left (3 b^3 e\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {1-x^2}} \, dx,x,c+d x\right )}{4 d}\\ &=-\frac {3 b^3 e (c+d x) \sqrt {1-(c+d x)^2}}{8 d}-\frac {3 b^2 e (c+d x)^2 \left (a+b \sin ^{-1}(c+d x)\right )}{4 d}+\frac {3 b e (c+d x) \sqrt {1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2}{4 d}-\frac {e \left (a+b \sin ^{-1}(c+d x)\right )^3}{4 d}+\frac {e (c+d x)^2 \left (a+b \sin ^{-1}(c+d x)\right )^3}{2 d}+\frac {\left (3 b^3 e\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2}} \, dx,x,c+d x\right )}{8 d}\\ &=-\frac {3 b^3 e (c+d x) \sqrt {1-(c+d x)^2}}{8 d}+\frac {3 b^3 e \sin ^{-1}(c+d x)}{8 d}-\frac {3 b^2 e (c+d x)^2 \left (a+b \sin ^{-1}(c+d x)\right )}{4 d}+\frac {3 b e (c+d x) \sqrt {1-(c+d x)^2} \left (a+b \sin ^{-1}(c+d x)\right )^2}{4 d}-\frac {e \left (a+b \sin ^{-1}(c+d x)\right )^3}{4 d}+\frac {e (c+d x)^2 \left (a+b \sin ^{-1}(c+d x)\right )^3}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.15, size = 137, normalized size = 0.83 \begin {gather*} \frac {e \left (\frac {3}{2} b^3 \left (-\left ((c+d x) \sqrt {1-(c+d x)^2}\right )+\text {ArcSin}(c+d x)\right )-3 b^2 (c+d x)^2 (a+b \text {ArcSin}(c+d x))+3 b (c+d x) \sqrt {1-(c+d x)^2} (a+b \text {ArcSin}(c+d x))^2-(a+b \text {ArcSin}(c+d x))^3+2 (c+d x)^2 (a+b \text {ArcSin}(c+d x))^3\right )}{4 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c*e + d*e*x)*(a + b*ArcSin[c + d*x])^3,x]

[Out]

(e*((3*b^3*(-((c + d*x)*Sqrt[1 - (c + d*x)^2]) + ArcSin[c + d*x]))/2 - 3*b^2*(c + d*x)^2*(a + b*ArcSin[c + d*x
]) + 3*b*(c + d*x)*Sqrt[1 - (c + d*x)^2]*(a + b*ArcSin[c + d*x])^2 - (a + b*ArcSin[c + d*x])^3 + 2*(c + d*x)^2
*(a + b*ArcSin[c + d*x])^3))/(4*d)

________________________________________________________________________________________

Maple [A]
time = 0.05, size = 266, normalized size = 1.61

method result size
derivativedivides \(\frac {\frac {e \left (d x +c \right )^{2} a^{3}}{2}+e \,b^{3} \left (\frac {\left (\left (d x +c \right )^{2}-1\right ) \arcsin \left (d x +c \right )^{3}}{2}+\frac {3 \arcsin \left (d x +c \right )^{2} \left (\left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}+\arcsin \left (d x +c \right )\right )}{4}-\frac {3 \left (\left (d x +c \right )^{2}-1\right ) \arcsin \left (d x +c \right )}{4}-\frac {3 \left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}}{8}-\frac {3 \arcsin \left (d x +c \right )}{8}-\frac {\arcsin \left (d x +c \right )^{3}}{2}\right )+3 e a \,b^{2} \left (\frac {\left (\left (d x +c \right )^{2}-1\right ) \arcsin \left (d x +c \right )^{2}}{2}+\frac {\arcsin \left (d x +c \right ) \left (\left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}+\arcsin \left (d x +c \right )\right )}{2}-\frac {\arcsin \left (d x +c \right )^{2}}{4}-\frac {\left (d x +c \right )^{2}}{4}\right )+3 e \,a^{2} b \left (\frac {\left (d x +c \right )^{2} \arcsin \left (d x +c \right )}{2}+\frac {\left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}}{4}-\frac {\arcsin \left (d x +c \right )}{4}\right )}{d}\) \(266\)
default \(\frac {\frac {e \left (d x +c \right )^{2} a^{3}}{2}+e \,b^{3} \left (\frac {\left (\left (d x +c \right )^{2}-1\right ) \arcsin \left (d x +c \right )^{3}}{2}+\frac {3 \arcsin \left (d x +c \right )^{2} \left (\left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}+\arcsin \left (d x +c \right )\right )}{4}-\frac {3 \left (\left (d x +c \right )^{2}-1\right ) \arcsin \left (d x +c \right )}{4}-\frac {3 \left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}}{8}-\frac {3 \arcsin \left (d x +c \right )}{8}-\frac {\arcsin \left (d x +c \right )^{3}}{2}\right )+3 e a \,b^{2} \left (\frac {\left (\left (d x +c \right )^{2}-1\right ) \arcsin \left (d x +c \right )^{2}}{2}+\frac {\arcsin \left (d x +c \right ) \left (\left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}+\arcsin \left (d x +c \right )\right )}{2}-\frac {\arcsin \left (d x +c \right )^{2}}{4}-\frac {\left (d x +c \right )^{2}}{4}\right )+3 e \,a^{2} b \left (\frac {\left (d x +c \right )^{2} \arcsin \left (d x +c \right )}{2}+\frac {\left (d x +c \right ) \sqrt {1-\left (d x +c \right )^{2}}}{4}-\frac {\arcsin \left (d x +c \right )}{4}\right )}{d}\) \(266\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)*(a+b*arcsin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/d*(1/2*e*(d*x+c)^2*a^3+e*b^3*(1/2*((d*x+c)^2-1)*arcsin(d*x+c)^3+3/4*arcsin(d*x+c)^2*((d*x+c)*(1-(d*x+c)^2)^(
1/2)+arcsin(d*x+c))-3/4*((d*x+c)^2-1)*arcsin(d*x+c)-3/8*(d*x+c)*(1-(d*x+c)^2)^(1/2)-3/8*arcsin(d*x+c)-1/2*arcs
in(d*x+c)^3)+3*e*a*b^2*(1/2*((d*x+c)^2-1)*arcsin(d*x+c)^2+1/2*arcsin(d*x+c)*((d*x+c)*(1-(d*x+c)^2)^(1/2)+arcsi
n(d*x+c))-1/4*arcsin(d*x+c)^2-1/4*(d*x+c)^2)+3*e*a^2*b*(1/2*(d*x+c)^2*arcsin(d*x+c)+1/4*(d*x+c)*(1-(d*x+c)^2)^
(1/2)-1/4*arcsin(d*x+c)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)*(a+b*arcsin(d*x+c))^3,x, algorithm="maxima")

[Out]

1/2*a^3*d*x^2*e + 3/4*(2*x^2*arcsin(d*x + c) + d*(3*c^2*arcsin(-(d^2*x + c*d)/sqrt(c^2*d^2 - (c^2 - 1)*d^2))/d
^3 + sqrt(-d^2*x^2 - 2*c*d*x - c^2 + 1)*x/d^2 - (c^2 - 1)*arcsin(-(d^2*x + c*d)/sqrt(c^2*d^2 - (c^2 - 1)*d^2))
/d^3 - 3*sqrt(-d^2*x^2 - 2*c*d*x - c^2 + 1)*c/d^3))*a^2*b*d*e + a^3*c*x*e + 3*((d*x + c)*arcsin(d*x + c) + sqr
t(-(d*x + c)^2 + 1))*a^2*b*c*e/d + 1/2*(b^3*d*x^2*e + 2*b^3*c*x*e)*arctan2(d*x + c, sqrt(d*x + c + 1)*sqrt(-d*
x - c + 1))^3 + integrate(3/2*((b^3*d^2*x^2*e + 2*b^3*c*d*x*e)*sqrt(d*x + c + 1)*sqrt(-d*x - c + 1)*arctan2(d*
x + c, sqrt(d*x + c + 1)*sqrt(-d*x - c + 1))^2 + 2*(a*b^2*d^3*x^3*e + 3*a*b^2*c*d^2*x^2*e + a*b^2*c^3*e - a*b^
2*c*e + (3*a*b^2*c^2*e - a*b^2*e)*d*x)*arctan2(d*x + c, sqrt(d*x + c + 1)*sqrt(-d*x - c + 1))^2)/(d^2*x^2 + 2*
c*d*x + c^2 - 1), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 321 vs. \(2 (155) = 310\).
time = 0.96, size = 321, normalized size = 1.95 \begin {gather*} \frac {2 \, {\left (2 \, b^{3} d^{2} x^{2} + 4 \, b^{3} c d x + 2 \, b^{3} c^{2} - b^{3}\right )} \arcsin \left (d x + c\right )^{3} e + 6 \, {\left (2 \, a b^{2} d^{2} x^{2} + 4 \, a b^{2} c d x + 2 \, a b^{2} c^{2} - a b^{2}\right )} \arcsin \left (d x + c\right )^{2} e + 3 \, {\left (2 \, {\left (2 \, a^{2} b - b^{3}\right )} d^{2} x^{2} + 4 \, {\left (2 \, a^{2} b - b^{3}\right )} c d x - 2 \, a^{2} b + b^{3} + 2 \, {\left (2 \, a^{2} b - b^{3}\right )} c^{2}\right )} \arcsin \left (d x + c\right ) e + 2 \, {\left ({\left (2 \, a^{3} - 3 \, a b^{2}\right )} d^{2} x^{2} + 2 \, {\left (2 \, a^{3} - 3 \, a b^{2}\right )} c d x\right )} e + 3 \, \sqrt {-d^{2} x^{2} - 2 \, c d x - c^{2} + 1} {\left (2 \, {\left (b^{3} d x + b^{3} c\right )} \arcsin \left (d x + c\right )^{2} e + 4 \, {\left (a b^{2} d x + a b^{2} c\right )} \arcsin \left (d x + c\right ) e + {\left ({\left (2 \, a^{2} b - b^{3}\right )} d x + {\left (2 \, a^{2} b - b^{3}\right )} c\right )} e\right )}}{8 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)*(a+b*arcsin(d*x+c))^3,x, algorithm="fricas")

[Out]

1/8*(2*(2*b^3*d^2*x^2 + 4*b^3*c*d*x + 2*b^3*c^2 - b^3)*arcsin(d*x + c)^3*e + 6*(2*a*b^2*d^2*x^2 + 4*a*b^2*c*d*
x + 2*a*b^2*c^2 - a*b^2)*arcsin(d*x + c)^2*e + 3*(2*(2*a^2*b - b^3)*d^2*x^2 + 4*(2*a^2*b - b^3)*c*d*x - 2*a^2*
b + b^3 + 2*(2*a^2*b - b^3)*c^2)*arcsin(d*x + c)*e + 2*((2*a^3 - 3*a*b^2)*d^2*x^2 + 2*(2*a^3 - 3*a*b^2)*c*d*x)
*e + 3*sqrt(-d^2*x^2 - 2*c*d*x - c^2 + 1)*(2*(b^3*d*x + b^3*c)*arcsin(d*x + c)^2*e + 4*(a*b^2*d*x + a*b^2*c)*a
rcsin(d*x + c)*e + ((2*a^2*b - b^3)*d*x + (2*a^2*b - b^3)*c)*e))/d

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 685 vs. \(2 (148) = 296\).
time = 0.40, size = 685, normalized size = 4.15 \begin {gather*} \begin {cases} a^{3} c e x + \frac {a^{3} d e x^{2}}{2} + \frac {3 a^{2} b c^{2} e \operatorname {asin}{\left (c + d x \right )}}{2 d} + 3 a^{2} b c e x \operatorname {asin}{\left (c + d x \right )} + \frac {3 a^{2} b c e \sqrt {- c^{2} - 2 c d x - d^{2} x^{2} + 1}}{4 d} + \frac {3 a^{2} b d e x^{2} \operatorname {asin}{\left (c + d x \right )}}{2} + \frac {3 a^{2} b e x \sqrt {- c^{2} - 2 c d x - d^{2} x^{2} + 1}}{4} - \frac {3 a^{2} b e \operatorname {asin}{\left (c + d x \right )}}{4 d} + \frac {3 a b^{2} c^{2} e \operatorname {asin}^{2}{\left (c + d x \right )}}{2 d} + 3 a b^{2} c e x \operatorname {asin}^{2}{\left (c + d x \right )} - \frac {3 a b^{2} c e x}{2} + \frac {3 a b^{2} c e \sqrt {- c^{2} - 2 c d x - d^{2} x^{2} + 1} \operatorname {asin}{\left (c + d x \right )}}{2 d} + \frac {3 a b^{2} d e x^{2} \operatorname {asin}^{2}{\left (c + d x \right )}}{2} - \frac {3 a b^{2} d e x^{2}}{4} + \frac {3 a b^{2} e x \sqrt {- c^{2} - 2 c d x - d^{2} x^{2} + 1} \operatorname {asin}{\left (c + d x \right )}}{2} - \frac {3 a b^{2} e \operatorname {asin}^{2}{\left (c + d x \right )}}{4 d} + \frac {b^{3} c^{2} e \operatorname {asin}^{3}{\left (c + d x \right )}}{2 d} - \frac {3 b^{3} c^{2} e \operatorname {asin}{\left (c + d x \right )}}{4 d} + b^{3} c e x \operatorname {asin}^{3}{\left (c + d x \right )} - \frac {3 b^{3} c e x \operatorname {asin}{\left (c + d x \right )}}{2} + \frac {3 b^{3} c e \sqrt {- c^{2} - 2 c d x - d^{2} x^{2} + 1} \operatorname {asin}^{2}{\left (c + d x \right )}}{4 d} - \frac {3 b^{3} c e \sqrt {- c^{2} - 2 c d x - d^{2} x^{2} + 1}}{8 d} + \frac {b^{3} d e x^{2} \operatorname {asin}^{3}{\left (c + d x \right )}}{2} - \frac {3 b^{3} d e x^{2} \operatorname {asin}{\left (c + d x \right )}}{4} + \frac {3 b^{3} e x \sqrt {- c^{2} - 2 c d x - d^{2} x^{2} + 1} \operatorname {asin}^{2}{\left (c + d x \right )}}{4} - \frac {3 b^{3} e x \sqrt {- c^{2} - 2 c d x - d^{2} x^{2} + 1}}{8} - \frac {b^{3} e \operatorname {asin}^{3}{\left (c + d x \right )}}{4 d} + \frac {3 b^{3} e \operatorname {asin}{\left (c + d x \right )}}{8 d} & \text {for}\: d \neq 0 \\c e x \left (a + b \operatorname {asin}{\left (c \right )}\right )^{3} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)*(a+b*asin(d*x+c))**3,x)

[Out]

Piecewise((a**3*c*e*x + a**3*d*e*x**2/2 + 3*a**2*b*c**2*e*asin(c + d*x)/(2*d) + 3*a**2*b*c*e*x*asin(c + d*x) +
 3*a**2*b*c*e*sqrt(-c**2 - 2*c*d*x - d**2*x**2 + 1)/(4*d) + 3*a**2*b*d*e*x**2*asin(c + d*x)/2 + 3*a**2*b*e*x*s
qrt(-c**2 - 2*c*d*x - d**2*x**2 + 1)/4 - 3*a**2*b*e*asin(c + d*x)/(4*d) + 3*a*b**2*c**2*e*asin(c + d*x)**2/(2*
d) + 3*a*b**2*c*e*x*asin(c + d*x)**2 - 3*a*b**2*c*e*x/2 + 3*a*b**2*c*e*sqrt(-c**2 - 2*c*d*x - d**2*x**2 + 1)*a
sin(c + d*x)/(2*d) + 3*a*b**2*d*e*x**2*asin(c + d*x)**2/2 - 3*a*b**2*d*e*x**2/4 + 3*a*b**2*e*x*sqrt(-c**2 - 2*
c*d*x - d**2*x**2 + 1)*asin(c + d*x)/2 - 3*a*b**2*e*asin(c + d*x)**2/(4*d) + b**3*c**2*e*asin(c + d*x)**3/(2*d
) - 3*b**3*c**2*e*asin(c + d*x)/(4*d) + b**3*c*e*x*asin(c + d*x)**3 - 3*b**3*c*e*x*asin(c + d*x)/2 + 3*b**3*c*
e*sqrt(-c**2 - 2*c*d*x - d**2*x**2 + 1)*asin(c + d*x)**2/(4*d) - 3*b**3*c*e*sqrt(-c**2 - 2*c*d*x - d**2*x**2 +
 1)/(8*d) + b**3*d*e*x**2*asin(c + d*x)**3/2 - 3*b**3*d*e*x**2*asin(c + d*x)/4 + 3*b**3*e*x*sqrt(-c**2 - 2*c*d
*x - d**2*x**2 + 1)*asin(c + d*x)**2/4 - 3*b**3*e*x*sqrt(-c**2 - 2*c*d*x - d**2*x**2 + 1)/8 - b**3*e*asin(c +
d*x)**3/(4*d) + 3*b**3*e*asin(c + d*x)/(8*d), Ne(d, 0)), (c*e*x*(a + b*asin(c))**3, True))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 340 vs. \(2 (149) = 298\).
time = 0.46, size = 340, normalized size = 2.06 \begin {gather*} \frac {{\left ({\left (d x + c\right )}^{2} - 1\right )} b^{3} e \arcsin \left (d x + c\right )^{3}}{2 \, d} + \frac {3 \, \sqrt {-{\left (d x + c\right )}^{2} + 1} {\left (d x + c\right )} b^{3} e \arcsin \left (d x + c\right )^{2}}{4 \, d} + \frac {3 \, {\left ({\left (d x + c\right )}^{2} - 1\right )} a b^{2} e \arcsin \left (d x + c\right )^{2}}{2 \, d} + \frac {b^{3} e \arcsin \left (d x + c\right )^{3}}{4 \, d} + \frac {3 \, \sqrt {-{\left (d x + c\right )}^{2} + 1} {\left (d x + c\right )} a b^{2} e \arcsin \left (d x + c\right )}{2 \, d} + \frac {3 \, {\left ({\left (d x + c\right )}^{2} - 1\right )} a^{2} b e \arcsin \left (d x + c\right )}{2 \, d} - \frac {3 \, {\left ({\left (d x + c\right )}^{2} - 1\right )} b^{3} e \arcsin \left (d x + c\right )}{4 \, d} + \frac {3 \, a b^{2} e \arcsin \left (d x + c\right )^{2}}{4 \, d} + \frac {3 \, \sqrt {-{\left (d x + c\right )}^{2} + 1} {\left (d x + c\right )} a^{2} b e}{4 \, d} - \frac {3 \, \sqrt {-{\left (d x + c\right )}^{2} + 1} {\left (d x + c\right )} b^{3} e}{8 \, d} + \frac {{\left ({\left (d x + c\right )}^{2} - 1\right )} a^{3} e}{2 \, d} - \frac {3 \, {\left ({\left (d x + c\right )}^{2} - 1\right )} a b^{2} e}{4 \, d} + \frac {3 \, a^{2} b e \arcsin \left (d x + c\right )}{4 \, d} - \frac {3 \, b^{3} e \arcsin \left (d x + c\right )}{8 \, d} - \frac {3 \, a b^{2} e}{8 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)*(a+b*arcsin(d*x+c))^3,x, algorithm="giac")

[Out]

1/2*((d*x + c)^2 - 1)*b^3*e*arcsin(d*x + c)^3/d + 3/4*sqrt(-(d*x + c)^2 + 1)*(d*x + c)*b^3*e*arcsin(d*x + c)^2
/d + 3/2*((d*x + c)^2 - 1)*a*b^2*e*arcsin(d*x + c)^2/d + 1/4*b^3*e*arcsin(d*x + c)^3/d + 3/2*sqrt(-(d*x + c)^2
 + 1)*(d*x + c)*a*b^2*e*arcsin(d*x + c)/d + 3/2*((d*x + c)^2 - 1)*a^2*b*e*arcsin(d*x + c)/d - 3/4*((d*x + c)^2
 - 1)*b^3*e*arcsin(d*x + c)/d + 3/4*a*b^2*e*arcsin(d*x + c)^2/d + 3/4*sqrt(-(d*x + c)^2 + 1)*(d*x + c)*a^2*b*e
/d - 3/8*sqrt(-(d*x + c)^2 + 1)*(d*x + c)*b^3*e/d + 1/2*((d*x + c)^2 - 1)*a^3*e/d - 3/4*((d*x + c)^2 - 1)*a*b^
2*e/d + 3/4*a^2*b*e*arcsin(d*x + c)/d - 3/8*b^3*e*arcsin(d*x + c)/d - 3/8*a*b^2*e/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \left (c\,e+d\,e\,x\right )\,{\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^3 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)*(a + b*asin(c + d*x))^3,x)

[Out]

int((c*e + d*e*x)*(a + b*asin(c + d*x))^3, x)

________________________________________________________________________________________