3.3.10 \(\int \frac {(a+b \text {ArcSin}(c+d x))^4}{c e+d e x} \, dx\) [210]

Optimal. Leaf size=202 \[ -\frac {i (a+b \text {ArcSin}(c+d x))^5}{5 b d e}+\frac {(a+b \text {ArcSin}(c+d x))^4 \log \left (1-e^{2 i \text {ArcSin}(c+d x)}\right )}{d e}-\frac {2 i b (a+b \text {ArcSin}(c+d x))^3 \text {PolyLog}\left (2,e^{2 i \text {ArcSin}(c+d x)}\right )}{d e}+\frac {3 b^2 (a+b \text {ArcSin}(c+d x))^2 \text {PolyLog}\left (3,e^{2 i \text {ArcSin}(c+d x)}\right )}{d e}+\frac {3 i b^3 (a+b \text {ArcSin}(c+d x)) \text {PolyLog}\left (4,e^{2 i \text {ArcSin}(c+d x)}\right )}{d e}-\frac {3 b^4 \text {PolyLog}\left (5,e^{2 i \text {ArcSin}(c+d x)}\right )}{2 d e} \]

[Out]

-1/5*I*(a+b*arcsin(d*x+c))^5/b/d/e+(a+b*arcsin(d*x+c))^4*ln(1-(I*(d*x+c)+(1-(d*x+c)^2)^(1/2))^2)/d/e-2*I*b*(a+
b*arcsin(d*x+c))^3*polylog(2,(I*(d*x+c)+(1-(d*x+c)^2)^(1/2))^2)/d/e+3*b^2*(a+b*arcsin(d*x+c))^2*polylog(3,(I*(
d*x+c)+(1-(d*x+c)^2)^(1/2))^2)/d/e+3*I*b^3*(a+b*arcsin(d*x+c))*polylog(4,(I*(d*x+c)+(1-(d*x+c)^2)^(1/2))^2)/d/
e-3/2*b^4*polylog(5,(I*(d*x+c)+(1-(d*x+c)^2)^(1/2))^2)/d/e

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 202, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {4889, 12, 4721, 3798, 2221, 2611, 6744, 2320, 6724} \begin {gather*} \frac {3 i b^3 \text {Li}_4\left (e^{2 i \text {ArcSin}(c+d x)}\right ) (a+b \text {ArcSin}(c+d x))}{d e}+\frac {3 b^2 \text {Li}_3\left (e^{2 i \text {ArcSin}(c+d x)}\right ) (a+b \text {ArcSin}(c+d x))^2}{d e}-\frac {2 i b \text {Li}_2\left (e^{2 i \text {ArcSin}(c+d x)}\right ) (a+b \text {ArcSin}(c+d x))^3}{d e}-\frac {i (a+b \text {ArcSin}(c+d x))^5}{5 b d e}+\frac {\log \left (1-e^{2 i \text {ArcSin}(c+d x)}\right ) (a+b \text {ArcSin}(c+d x))^4}{d e}-\frac {3 b^4 \text {Li}_5\left (e^{2 i \text {ArcSin}(c+d x)}\right )}{2 d e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c + d*x])^4/(c*e + d*e*x),x]

[Out]

((-1/5*I)*(a + b*ArcSin[c + d*x])^5)/(b*d*e) + ((a + b*ArcSin[c + d*x])^4*Log[1 - E^((2*I)*ArcSin[c + d*x])])/
(d*e) - ((2*I)*b*(a + b*ArcSin[c + d*x])^3*PolyLog[2, E^((2*I)*ArcSin[c + d*x])])/(d*e) + (3*b^2*(a + b*ArcSin
[c + d*x])^2*PolyLog[3, E^((2*I)*ArcSin[c + d*x])])/(d*e) + ((3*I)*b^3*(a + b*ArcSin[c + d*x])*PolyLog[4, E^((
2*I)*ArcSin[c + d*x])])/(d*e) - (3*b^4*PolyLog[5, E^((2*I)*ArcSin[c + d*x])])/(2*d*e)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2320

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2611

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(
f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + b*x)))^n]/(b*c*n*Log[F])), x] + Dist[g*(m/(b*c*n*Log[F])), Int[(f + g*
x)^(m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 3798

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Simp[I*((c + d*x)^(m + 1)/(d*(
m + 1))), x] - Dist[2*I, Int[(c + d*x)^m*E^(2*I*k*Pi)*(E^(2*I*(e + f*x))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x))))
, x], x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 4721

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[(a + b*x)^n*Cot[x], x], x, ArcSin[c*
x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rule 4889

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rule 6724

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rule 6744

Int[((e_.) + (f_.)*(x_))^(m_.)*PolyLog[n_, (d_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(p_.)], x_Symbol] :> Simp
[(e + f*x)^m*(PolyLog[n + 1, d*(F^(c*(a + b*x)))^p]/(b*c*p*Log[F])), x] - Dist[f*(m/(b*c*p*Log[F])), Int[(e +
f*x)^(m - 1)*PolyLog[n + 1, d*(F^(c*(a + b*x)))^p], x], x] /; FreeQ[{F, a, b, c, d, e, f, n, p}, x] && GtQ[m,
0]

Rubi steps

\begin {align*} \int \frac {\left (a+b \sin ^{-1}(c+d x)\right )^4}{c e+d e x} \, dx &=\frac {\text {Subst}\left (\int \frac {\left (a+b \sin ^{-1}(x)\right )^4}{e x} \, dx,x,c+d x\right )}{d}\\ &=\frac {\text {Subst}\left (\int \frac {\left (a+b \sin ^{-1}(x)\right )^4}{x} \, dx,x,c+d x\right )}{d e}\\ &=\frac {\text {Subst}\left (\int (a+b x)^4 \cot (x) \, dx,x,\sin ^{-1}(c+d x)\right )}{d e}\\ &=-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )^5}{5 b d e}-\frac {(2 i) \text {Subst}\left (\int \frac {e^{2 i x} (a+b x)^4}{1-e^{2 i x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{d e}\\ &=-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )^5}{5 b d e}+\frac {\left (a+b \sin ^{-1}(c+d x)\right )^4 \log \left (1-e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}-\frac {(4 b) \text {Subst}\left (\int (a+b x)^3 \log \left (1-e^{2 i x}\right ) \, dx,x,\sin ^{-1}(c+d x)\right )}{d e}\\ &=-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )^5}{5 b d e}+\frac {\left (a+b \sin ^{-1}(c+d x)\right )^4 \log \left (1-e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}-\frac {2 i b \left (a+b \sin ^{-1}(c+d x)\right )^3 \text {Li}_2\left (e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}+\frac {\left (6 i b^2\right ) \text {Subst}\left (\int (a+b x)^2 \text {Li}_2\left (e^{2 i x}\right ) \, dx,x,\sin ^{-1}(c+d x)\right )}{d e}\\ &=-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )^5}{5 b d e}+\frac {\left (a+b \sin ^{-1}(c+d x)\right )^4 \log \left (1-e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}-\frac {2 i b \left (a+b \sin ^{-1}(c+d x)\right )^3 \text {Li}_2\left (e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}+\frac {3 b^2 \left (a+b \sin ^{-1}(c+d x)\right )^2 \text {Li}_3\left (e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}-\frac {\left (6 b^3\right ) \text {Subst}\left (\int (a+b x) \text {Li}_3\left (e^{2 i x}\right ) \, dx,x,\sin ^{-1}(c+d x)\right )}{d e}\\ &=-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )^5}{5 b d e}+\frac {\left (a+b \sin ^{-1}(c+d x)\right )^4 \log \left (1-e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}-\frac {2 i b \left (a+b \sin ^{-1}(c+d x)\right )^3 \text {Li}_2\left (e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}+\frac {3 b^2 \left (a+b \sin ^{-1}(c+d x)\right )^2 \text {Li}_3\left (e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}+\frac {3 i b^3 \left (a+b \sin ^{-1}(c+d x)\right ) \text {Li}_4\left (e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}-\frac {\left (3 i b^4\right ) \text {Subst}\left (\int \text {Li}_4\left (e^{2 i x}\right ) \, dx,x,\sin ^{-1}(c+d x)\right )}{d e}\\ &=-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )^5}{5 b d e}+\frac {\left (a+b \sin ^{-1}(c+d x)\right )^4 \log \left (1-e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}-\frac {2 i b \left (a+b \sin ^{-1}(c+d x)\right )^3 \text {Li}_2\left (e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}+\frac {3 b^2 \left (a+b \sin ^{-1}(c+d x)\right )^2 \text {Li}_3\left (e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}+\frac {3 i b^3 \left (a+b \sin ^{-1}(c+d x)\right ) \text {Li}_4\left (e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}-\frac {\left (3 b^4\right ) \text {Subst}\left (\int \frac {\text {Li}_4(x)}{x} \, dx,x,e^{2 i \sin ^{-1}(c+d x)}\right )}{2 d e}\\ &=-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )^5}{5 b d e}+\frac {\left (a+b \sin ^{-1}(c+d x)\right )^4 \log \left (1-e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}-\frac {2 i b \left (a+b \sin ^{-1}(c+d x)\right )^3 \text {Li}_2\left (e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}+\frac {3 b^2 \left (a+b \sin ^{-1}(c+d x)\right )^2 \text {Li}_3\left (e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}+\frac {3 i b^3 \left (a+b \sin ^{-1}(c+d x)\right ) \text {Li}_4\left (e^{2 i \sin ^{-1}(c+d x)}\right )}{d e}-\frac {3 b^4 \text {Li}_5\left (e^{2 i \sin ^{-1}(c+d x)}\right )}{2 d e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(439\) vs. \(2(202)=404\).
time = 0.25, size = 439, normalized size = 2.17 \begin {gather*} \frac {16 a^4 \log (c+d x)+64 a^3 b \left (\text {ArcSin}(c+d x) \log \left (1-e^{2 i \text {ArcSin}(c+d x)}\right )-\frac {1}{2} i \left (\text {ArcSin}(c+d x)^2+\text {PolyLog}\left (2,e^{2 i \text {ArcSin}(c+d x)}\right )\right )\right )+4 a^2 b^2 \left (-i \pi ^3+8 i \text {ArcSin}(c+d x)^3+24 \text {ArcSin}(c+d x)^2 \log \left (1-e^{-2 i \text {ArcSin}(c+d x)}\right )+24 i \text {ArcSin}(c+d x) \text {PolyLog}\left (2,e^{-2 i \text {ArcSin}(c+d x)}\right )+12 \text {PolyLog}\left (3,e^{-2 i \text {ArcSin}(c+d x)}\right )\right )-i a b^3 \left (\pi ^4-16 \text {ArcSin}(c+d x)^4+64 i \text {ArcSin}(c+d x)^3 \log \left (1-e^{-2 i \text {ArcSin}(c+d x)}\right )-96 \text {ArcSin}(c+d x)^2 \text {PolyLog}\left (2,e^{-2 i \text {ArcSin}(c+d x)}\right )+96 i \text {ArcSin}(c+d x) \text {PolyLog}\left (3,e^{-2 i \text {ArcSin}(c+d x)}\right )+48 \text {PolyLog}\left (4,e^{-2 i \text {ArcSin}(c+d x)}\right )\right )+16 b^4 \left (-\frac {i \pi ^5}{160}+\frac {1}{5} i \text {ArcSin}(c+d x)^5+\text {ArcSin}(c+d x)^4 \log \left (1-e^{-2 i \text {ArcSin}(c+d x)}\right )+2 i \text {ArcSin}(c+d x)^3 \text {PolyLog}\left (2,e^{-2 i \text {ArcSin}(c+d x)}\right )+3 \text {ArcSin}(c+d x)^2 \text {PolyLog}\left (3,e^{-2 i \text {ArcSin}(c+d x)}\right )-3 i \text {ArcSin}(c+d x) \text {PolyLog}\left (4,e^{-2 i \text {ArcSin}(c+d x)}\right )-\frac {3}{2} \text {PolyLog}\left (5,e^{-2 i \text {ArcSin}(c+d x)}\right )\right )}{16 d e} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSin[c + d*x])^4/(c*e + d*e*x),x]

[Out]

(16*a^4*Log[c + d*x] + 64*a^3*b*(ArcSin[c + d*x]*Log[1 - E^((2*I)*ArcSin[c + d*x])] - (I/2)*(ArcSin[c + d*x]^2
 + PolyLog[2, E^((2*I)*ArcSin[c + d*x])])) + 4*a^2*b^2*((-I)*Pi^3 + (8*I)*ArcSin[c + d*x]^3 + 24*ArcSin[c + d*
x]^2*Log[1 - E^((-2*I)*ArcSin[c + d*x])] + (24*I)*ArcSin[c + d*x]*PolyLog[2, E^((-2*I)*ArcSin[c + d*x])] + 12*
PolyLog[3, E^((-2*I)*ArcSin[c + d*x])]) - I*a*b^3*(Pi^4 - 16*ArcSin[c + d*x]^4 + (64*I)*ArcSin[c + d*x]^3*Log[
1 - E^((-2*I)*ArcSin[c + d*x])] - 96*ArcSin[c + d*x]^2*PolyLog[2, E^((-2*I)*ArcSin[c + d*x])] + (96*I)*ArcSin[
c + d*x]*PolyLog[3, E^((-2*I)*ArcSin[c + d*x])] + 48*PolyLog[4, E^((-2*I)*ArcSin[c + d*x])]) + 16*b^4*((-1/160
*I)*Pi^5 + (I/5)*ArcSin[c + d*x]^5 + ArcSin[c + d*x]^4*Log[1 - E^((-2*I)*ArcSin[c + d*x])] + (2*I)*ArcSin[c +
d*x]^3*PolyLog[2, E^((-2*I)*ArcSin[c + d*x])] + 3*ArcSin[c + d*x]^2*PolyLog[3, E^((-2*I)*ArcSin[c + d*x])] - (
3*I)*ArcSin[c + d*x]*PolyLog[4, E^((-2*I)*ArcSin[c + d*x])] - (3*PolyLog[5, E^((-2*I)*ArcSin[c + d*x])])/2))/(
16*d*e)

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1199 vs. \(2 (255 ) = 510\).
time = 0.19, size = 1200, normalized size = 5.94

method result size
derivativedivides \(\text {Expression too large to display}\) \(1200\)
default \(\text {Expression too large to display}\) \(1200\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(d*x+c))^4/(d*e*x+c*e),x,method=_RETURNVERBOSE)

[Out]

1/d*(-12*I*a^2*b^2/e*arcsin(d*x+c)*polylog(2,-I*(d*x+c)-(1-(d*x+c)^2)^(1/2))+6*a^2*b^2/e*arcsin(d*x+c)^2*ln(1+
I*(d*x+c)+(1-(d*x+c)^2)^(1/2))+6*a^2*b^2/e*arcsin(d*x+c)^2*ln(1-I*(d*x+c)-(1-(d*x+c)^2)^(1/2))-2*I*a^2*b^2/e*a
rcsin(d*x+c)^3+4*a*b^3/e*arcsin(d*x+c)^3*ln(1+I*(d*x+c)+(1-(d*x+c)^2)^(1/2))+24*a*b^3/e*arcsin(d*x+c)*polylog(
3,-I*(d*x+c)-(1-(d*x+c)^2)^(1/2))+4*a*b^3/e*arcsin(d*x+c)^3*ln(1-I*(d*x+c)-(1-(d*x+c)^2)^(1/2))+24*a*b^3/e*arc
sin(d*x+c)*polylog(3,I*(d*x+c)+(1-(d*x+c)^2)^(1/2))-I*a*b^3/e*arcsin(d*x+c)^4+24*I*a*b^3/e*polylog(4,-I*(d*x+c
)-(1-(d*x+c)^2)^(1/2))+24*I*a*b^3/e*polylog(4,I*(d*x+c)+(1-(d*x+c)^2)^(1/2))-4*I*b^4/e*arcsin(d*x+c)^3*polylog
(2,I*(d*x+c)+(1-(d*x+c)^2)^(1/2))+24*I*b^4/e*arcsin(d*x+c)*polylog(4,I*(d*x+c)+(1-(d*x+c)^2)^(1/2))-4*I*b^4/e*
arcsin(d*x+c)^3*polylog(2,-I*(d*x+c)-(1-(d*x+c)^2)^(1/2))+24*I*b^4/e*arcsin(d*x+c)*polylog(4,-I*(d*x+c)-(1-(d*
x+c)^2)^(1/2))+4*a^3*b/e*arcsin(d*x+c)*ln(1+I*(d*x+c)+(1-(d*x+c)^2)^(1/2))+4*a^3*b/e*arcsin(d*x+c)*ln(1-I*(d*x
+c)-(1-(d*x+c)^2)^(1/2))-2*I*a^3*b/e*arcsin(d*x+c)^2-4*I*a^3*b/e*polylog(2,I*(d*x+c)+(1-(d*x+c)^2)^(1/2))-4*I*
a^3*b/e*polylog(2,-I*(d*x+c)-(1-(d*x+c)^2)^(1/2))-12*I*a^2*b^2/e*arcsin(d*x+c)*polylog(2,I*(d*x+c)+(1-(d*x+c)^
2)^(1/2))-12*I*a*b^3/e*arcsin(d*x+c)^2*polylog(2,-I*(d*x+c)-(1-(d*x+c)^2)^(1/2))-12*I*a*b^3/e*arcsin(d*x+c)^2*
polylog(2,I*(d*x+c)+(1-(d*x+c)^2)^(1/2))-24*b^4/e*polylog(5,-I*(d*x+c)-(1-(d*x+c)^2)^(1/2))-24*b^4/e*polylog(5
,I*(d*x+c)+(1-(d*x+c)^2)^(1/2))+a^4/e*ln(d*x+c)+b^4/e*arcsin(d*x+c)^4*ln(1+I*(d*x+c)+(1-(d*x+c)^2)^(1/2))+12*b
^4/e*arcsin(d*x+c)^2*polylog(3,-I*(d*x+c)-(1-(d*x+c)^2)^(1/2))+b^4/e*arcsin(d*x+c)^4*ln(1-I*(d*x+c)-(1-(d*x+c)
^2)^(1/2))+12*b^4/e*arcsin(d*x+c)^2*polylog(3,I*(d*x+c)+(1-(d*x+c)^2)^(1/2))-1/5*I*b^4/e*arcsin(d*x+c)^5+12*a^
2*b^2/e*polylog(3,-I*(d*x+c)-(1-(d*x+c)^2)^(1/2))+12*a^2*b^2/e*polylog(3,I*(d*x+c)+(1-(d*x+c)^2)^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))^4/(d*e*x+c*e),x, algorithm="maxima")

[Out]

a^4*e^(-1)*log(d*x*e + c*e)/d + integrate((b^4*arctan2(d*x + c, sqrt(d*x + c + 1)*sqrt(-d*x - c + 1))^4 + 4*a*
b^3*arctan2(d*x + c, sqrt(d*x + c + 1)*sqrt(-d*x - c + 1))^3 + 6*a^2*b^2*arctan2(d*x + c, sqrt(d*x + c + 1)*sq
rt(-d*x - c + 1))^2 + 4*a^3*b*arctan2(d*x + c, sqrt(d*x + c + 1)*sqrt(-d*x - c + 1)))/(d*x*e + c*e), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))^4/(d*e*x+c*e),x, algorithm="fricas")

[Out]

integral((b^4*arcsin(d*x + c)^4 + 4*a*b^3*arcsin(d*x + c)^3 + 6*a^2*b^2*arcsin(d*x + c)^2 + 4*a^3*b*arcsin(d*x
 + c) + a^4)*e^(-1)/(d*x + c), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {a^{4}}{c + d x}\, dx + \int \frac {b^{4} \operatorname {asin}^{4}{\left (c + d x \right )}}{c + d x}\, dx + \int \frac {4 a b^{3} \operatorname {asin}^{3}{\left (c + d x \right )}}{c + d x}\, dx + \int \frac {6 a^{2} b^{2} \operatorname {asin}^{2}{\left (c + d x \right )}}{c + d x}\, dx + \int \frac {4 a^{3} b \operatorname {asin}{\left (c + d x \right )}}{c + d x}\, dx}{e} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(d*x+c))**4/(d*e*x+c*e),x)

[Out]

(Integral(a**4/(c + d*x), x) + Integral(b**4*asin(c + d*x)**4/(c + d*x), x) + Integral(4*a*b**3*asin(c + d*x)*
*3/(c + d*x), x) + Integral(6*a**2*b**2*asin(c + d*x)**2/(c + d*x), x) + Integral(4*a**3*b*asin(c + d*x)/(c +
d*x), x))/e

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))^4/(d*e*x+c*e),x, algorithm="giac")

[Out]

integrate((b*arcsin(d*x + c) + a)^4/(d*e*x + c*e), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^4}{c\,e+d\,e\,x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c + d*x))^4/(c*e + d*e*x),x)

[Out]

int((a + b*asin(c + d*x))^4/(c*e + d*e*x), x)

________________________________________________________________________________________