3.3.43 \(\int \sqrt {a+b \text {ArcSin}(c+d x)} \, dx\) [243]

Optimal. Leaf size=133 \[ \frac {(c+d x) \sqrt {a+b \text {ArcSin}(c+d x)}}{d}-\frac {\sqrt {b} \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{d}+\frac {\sqrt {b} \sqrt {\frac {\pi }{2}} \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{d} \]

[Out]

-1/2*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*b^(1/2)*2^(1/2)*Pi^(1/2)/d+1/2*Fres
nelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(a/b)*b^(1/2)*2^(1/2)*Pi^(1/2)/d+(d*x+c)*(a+b*arcs
in(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.17, antiderivative size = 133, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {4887, 4715, 4809, 3387, 3386, 3432, 3385, 3433} \begin {gather*} \frac {\sqrt {\frac {\pi }{2}} \sqrt {b} \sin \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{d}-\frac {\sqrt {\frac {\pi }{2}} \sqrt {b} \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{d}+\frac {(c+d x) \sqrt {a+b \text {ArcSin}(c+d x)}}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*ArcSin[c + d*x]],x]

[Out]

((c + d*x)*Sqrt[a + b*ArcSin[c + d*x]])/d - (Sqrt[b]*Sqrt[Pi/2]*Cos[a/b]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSi
n[c + d*x]])/Sqrt[b]])/d + (Sqrt[b]*Sqrt[Pi/2]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]]*Sin[
a/b])/d

Rule 3385

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3386

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[f*(x^2/d)], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3387

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 4715

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSin[c*x])^n, x] - Dist[b*c*n, Int[
x*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 4809

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*c
^(m + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Subst[Int[x^n*Sin[-a/b + x/b]^m*Cos[-a/b + x/b]^(2*p + 1), x],
 x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p + 2, 0] && IGtQ[m,
 0]

Rule 4887

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcSin[x])^n, x],
 x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]

Rubi steps

\begin {align*} \int \sqrt {a+b \sin ^{-1}(c+d x)} \, dx &=\frac {\text {Subst}\left (\int \sqrt {a+b \sin ^{-1}(x)} \, dx,x,c+d x\right )}{d}\\ &=\frac {(c+d x) \sqrt {a+b \sin ^{-1}(c+d x)}}{d}-\frac {b \text {Subst}\left (\int \frac {x}{\sqrt {1-x^2} \sqrt {a+b \sin ^{-1}(x)}} \, dx,x,c+d x\right )}{2 d}\\ &=\frac {(c+d x) \sqrt {a+b \sin ^{-1}(c+d x)}}{d}-\frac {b \text {Subst}\left (\int \frac {\sin (x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 d}\\ &=\frac {(c+d x) \sqrt {a+b \sin ^{-1}(c+d x)}}{d}-\frac {\left (b \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 d}+\frac {\left (b \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 d}\\ &=\frac {(c+d x) \sqrt {a+b \sin ^{-1}(c+d x)}}{d}-\frac {\cos \left (\frac {a}{b}\right ) \text {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{d}+\frac {\sin \left (\frac {a}{b}\right ) \text {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{d}\\ &=\frac {(c+d x) \sqrt {a+b \sin ^{-1}(c+d x)}}{d}-\frac {\sqrt {b} \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{d}+\frac {\sqrt {b} \sqrt {\frac {\pi }{2}} C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.04, size = 129, normalized size = 0.97 \begin {gather*} \frac {b e^{-\frac {i a}{b}} \left (\sqrt {-\frac {i (a+b \text {ArcSin}(c+d x))}{b}} \text {Gamma}\left (\frac {3}{2},-\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )+e^{\frac {2 i a}{b}} \sqrt {\frac {i (a+b \text {ArcSin}(c+d x))}{b}} \text {Gamma}\left (\frac {3}{2},\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )\right )}{2 d \sqrt {a+b \text {ArcSin}(c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*ArcSin[c + d*x]],x]

[Out]

(b*(Sqrt[((-I)*(a + b*ArcSin[c + d*x]))/b]*Gamma[3/2, ((-I)*(a + b*ArcSin[c + d*x]))/b] + E^(((2*I)*a)/b)*Sqrt
[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma[3/2, (I*(a + b*ArcSin[c + d*x]))/b]))/(2*d*E^((I*a)/b)*Sqrt[a + b*ArcSin
[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 0.00, size = 203, normalized size = 1.53

method result size
default \(-\frac {-\sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \cos \left (\frac {a}{b}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) b -\sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \sin \left (\frac {a}{b}\right ) \FresnelC \left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) b +2 \sin \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) \arcsin \left (d x +c \right ) b +2 \sin \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) a}{2 d \sqrt {a +b \arcsin \left (d x +c \right )}}\) \(203\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/d/(a+b*arcsin(d*x+c))^(1/2)*(-2^(1/2)*Pi^(1/2)*(-1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)*cos(a/b)*FresnelS(2
^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*b-2^(1/2)*Pi^(1/2)*(-1/b)^(1/2)*(a+b*arcsin(d*x+c))^
(1/2)*sin(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*b+2*sin(-(a+b*arcsin(d*x+c)
)/b+a/b)*arcsin(d*x+c)*b+2*sin(-(a+b*arcsin(d*x+c))/b+a/b)*a)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*arcsin(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*asin(c + d*x)), x)

________________________________________________________________________________________

Giac [C] Result contains complex when optimal does not.
time = 0.69, size = 563, normalized size = 4.23 \begin {gather*} \frac {\sqrt {2} \sqrt {\pi } a b \operatorname {erf}\left (-\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (\frac {i \, a}{b}\right )}}{2 \, {\left (\frac {i \, b^{2}}{\sqrt {{\left | b \right |}}} + b \sqrt {{\left | b \right |}}\right )} d} + \frac {i \, \sqrt {2} \sqrt {\pi } b^{2} \operatorname {erf}\left (-\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (\frac {i \, a}{b}\right )}}{4 \, {\left (\frac {i \, b^{2}}{\sqrt {{\left | b \right |}}} + b \sqrt {{\left | b \right |}}\right )} d} + \frac {\sqrt {2} \sqrt {\pi } a b \operatorname {erf}\left (\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (-\frac {i \, a}{b}\right )}}{2 \, {\left (-\frac {i \, b^{2}}{\sqrt {{\left | b \right |}}} + b \sqrt {{\left | b \right |}}\right )} d} - \frac {i \, \sqrt {2} \sqrt {\pi } b^{2} \operatorname {erf}\left (\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (-\frac {i \, a}{b}\right )}}{4 \, {\left (-\frac {i \, b^{2}}{\sqrt {{\left | b \right |}}} + b \sqrt {{\left | b \right |}}\right )} d} - \frac {\sqrt {\pi } a \operatorname {erf}\left (-\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (\frac {i \, a}{b}\right )}}{d {\left (\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} - \frac {\sqrt {\pi } a \operatorname {erf}\left (\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (-\frac {i \, a}{b}\right )}}{d {\left (-\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} - \frac {i \, \sqrt {b \arcsin \left (d x + c\right ) + a} e^{\left (i \, \arcsin \left (d x + c\right )\right )}}{2 \, d} + \frac {i \, \sqrt {b \arcsin \left (d x + c\right ) + a} e^{\left (-i \, \arcsin \left (d x + c\right )\right )}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/2*sqrt(2)*sqrt(pi)*a*b*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcs
in(d*x + c) + a)*sqrt(abs(b))/b)*e^(I*a/b)/((I*b^2/sqrt(abs(b)) + b*sqrt(abs(b)))*d) + 1/4*I*sqrt(2)*sqrt(pi)*
b^2*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt
(abs(b))/b)*e^(I*a/b)/((I*b^2/sqrt(abs(b)) + b*sqrt(abs(b)))*d) + 1/2*sqrt(2)*sqrt(pi)*a*b*erf(1/2*I*sqrt(2)*s
qrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/(
(-I*b^2/sqrt(abs(b)) + b*sqrt(abs(b)))*d) - 1/4*I*sqrt(2)*sqrt(pi)*b^2*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c
) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/((-I*b^2/sqrt(abs(b))
 + b*sqrt(abs(b)))*d) - sqrt(pi)*a*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*s
qrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(I*a/b)/(d*(I*sqrt(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) - s
qrt(pi)*a*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)
*sqrt(abs(b))/b)*e^(-I*a/b)/(d*(-I*sqrt(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) - 1/2*I*sqrt(b*arcsin(d*x +
 c) + a)*e^(I*arcsin(d*x + c))/d + 1/2*I*sqrt(b*arcsin(d*x + c) + a)*e^(-I*arcsin(d*x + c))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \sqrt {a+b\,\mathrm {asin}\left (c+d\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c + d*x))^(1/2),x)

[Out]

int((a + b*asin(c + d*x))^(1/2), x)

________________________________________________________________________________________