3.3.67 \(\int \frac {(c e+d e x)^2}{(a+b \text {ArcSin}(c+d x))^{3/2}} \, dx\) [267]

Optimal. Leaf size=280 \[ -\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \text {ArcSin}(c+d x)}}-\frac {e^2 \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {e^2 \sqrt {\frac {3 \pi }{2}} \cos \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {e^2 \sqrt {\frac {\pi }{2}} \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{b^{3/2} d}-\frac {e^2 \sqrt {\frac {3 \pi }{2}} \text {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{b^{3/2} d} \]

[Out]

-1/2*e^2*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(3/2)/d+1/2*
e^2*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2)/b^(3/2)/d+1/2*e^2*c
os(3*a/b)*FresnelS(6^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*6^(1/2)*Pi^(1/2)/b^(3/2)/d-1/2*e^2*Fres
nelC(6^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(3*a/b)*6^(1/2)*Pi^(1/2)/b^(3/2)/d-2*e^2*(d*x+c)^2
*(1-(d*x+c)^2)^(1/2)/b/d/(a+b*arcsin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.35, antiderivative size = 280, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {4889, 12, 4727, 3387, 3386, 3432, 3385, 3433} \begin {gather*} \frac {\sqrt {\frac {\pi }{2}} e^2 \sin \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}-\frac {\sqrt {\frac {3 \pi }{2}} e^2 \sin \left (\frac {3 a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}-\frac {\sqrt {\frac {\pi }{2}} e^2 \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {\sqrt {\frac {3 \pi }{2}} e^2 \cos \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \text {ArcSin}(c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^2/(a + b*ArcSin[c + d*x])^(3/2),x]

[Out]

(-2*e^2*(c + d*x)^2*Sqrt[1 - (c + d*x)^2])/(b*d*Sqrt[a + b*ArcSin[c + d*x]]) - (e^2*Sqrt[Pi/2]*Cos[a/b]*Fresne
lS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]])/(b^(3/2)*d) + (e^2*Sqrt[(3*Pi)/2]*Cos[(3*a)/b]*FresnelS[
(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]])/(b^(3/2)*d) + (e^2*Sqrt[Pi/2]*FresnelC[(Sqrt[2/Pi]*Sqrt[a +
 b*ArcSin[c + d*x]])/Sqrt[b]]*Sin[a/b])/(b^(3/2)*d) - (e^2*Sqrt[(3*Pi)/2]*FresnelC[(Sqrt[6/Pi]*Sqrt[a + b*ArcS
in[c + d*x]])/Sqrt[b]]*Sin[(3*a)/b])/(b^(3/2)*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3385

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3386

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[f*(x^2/d)], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3387

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 4727

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^m*Sqrt[1 - c^2*x^2]*((a + b*ArcSin
[c*x])^(n + 1)/(b*c*(n + 1))), x] - Dist[1/(b^2*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[x^(n + 1), Sin[
-a/b + x/b]^(m - 1)*(m - (m + 1)*Sin[-a/b + x/b]^2), x], x], x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c}, x]
&& IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, -1]

Rule 4889

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rubi steps

\begin {align*} \int \frac {(c e+d e x)^2}{\left (a+b \sin ^{-1}(c+d x)\right )^{3/2}} \, dx &=\frac {\text {Subst}\left (\int \frac {e^2 x^2}{\left (a+b \sin ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{d}\\ &=\frac {e^2 \text {Subst}\left (\int \frac {x^2}{\left (a+b \sin ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{d}\\ &=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}+\frac {\left (2 e^2\right ) \text {Subst}\left (\int \left (-\frac {\sin (x)}{4 \sqrt {a+b x}}+\frac {3 \sin (3 x)}{4 \sqrt {a+b x}}\right ) \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}\\ &=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {e^2 \text {Subst}\left (\int \frac {\sin (x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 b d}+\frac {\left (3 e^2\right ) \text {Subst}\left (\int \frac {\sin (3 x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 b d}\\ &=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {\left (e^2 \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 b d}+\frac {\left (3 e^2 \cos \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {3 a}{b}+3 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 b d}+\frac {\left (e^2 \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 b d}-\frac {\left (3 e^2 \sin \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {3 a}{b}+3 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 b d}\\ &=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {\left (e^2 \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}+\frac {\left (3 e^2 \cos \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}+\frac {\left (e^2 \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}-\frac {\left (3 e^2 \sin \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}\\ &=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {e^2 \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {e^2 \sqrt {\frac {3 \pi }{2}} \cos \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {e^2 \sqrt {\frac {\pi }{2}} C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{b^{3/2} d}-\frac {e^2 \sqrt {\frac {3 \pi }{2}} C\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{b^{3/2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.24, size = 380, normalized size = 1.36 \begin {gather*} \frac {e^2 e^{-\frac {3 i (a+b \text {ArcSin}(c+d x))}{b}} \left (e^{\frac {3 i a}{b}}-e^{\frac {3 i a}{b}+2 i \text {ArcSin}(c+d x)}-e^{\frac {3 i a}{b}+4 i \text {ArcSin}(c+d x)}+e^{\frac {3 i (a+2 b \text {ArcSin}(c+d x))}{b}}+e^{\frac {2 i a}{b}+3 i \text {ArcSin}(c+d x)} \sqrt {-\frac {i (a+b \text {ArcSin}(c+d x))}{b}} \text {Gamma}\left (\frac {1}{2},-\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )+e^{\frac {4 i a}{b}+3 i \text {ArcSin}(c+d x)} \sqrt {\frac {i (a+b \text {ArcSin}(c+d x))}{b}} \text {Gamma}\left (\frac {1}{2},\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )-\sqrt {3} e^{3 i \text {ArcSin}(c+d x)} \sqrt {-\frac {i (a+b \text {ArcSin}(c+d x))}{b}} \text {Gamma}\left (\frac {1}{2},-\frac {3 i (a+b \text {ArcSin}(c+d x))}{b}\right )-\sqrt {3} e^{3 i \left (\frac {2 a}{b}+\text {ArcSin}(c+d x)\right )} \sqrt {\frac {i (a+b \text {ArcSin}(c+d x))}{b}} \text {Gamma}\left (\frac {1}{2},\frac {3 i (a+b \text {ArcSin}(c+d x))}{b}\right )\right )}{4 b d \sqrt {a+b \text {ArcSin}(c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c*e + d*e*x)^2/(a + b*ArcSin[c + d*x])^(3/2),x]

[Out]

(e^2*(E^(((3*I)*a)/b) - E^(((3*I)*a)/b + (2*I)*ArcSin[c + d*x]) - E^(((3*I)*a)/b + (4*I)*ArcSin[c + d*x]) + E^
(((3*I)*(a + 2*b*ArcSin[c + d*x]))/b) + E^(((2*I)*a)/b + (3*I)*ArcSin[c + d*x])*Sqrt[((-I)*(a + b*ArcSin[c + d
*x]))/b]*Gamma[1/2, ((-I)*(a + b*ArcSin[c + d*x]))/b] + E^(((4*I)*a)/b + (3*I)*ArcSin[c + d*x])*Sqrt[(I*(a + b
*ArcSin[c + d*x]))/b]*Gamma[1/2, (I*(a + b*ArcSin[c + d*x]))/b] - Sqrt[3]*E^((3*I)*ArcSin[c + d*x])*Sqrt[((-I)
*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((-3*I)*(a + b*ArcSin[c + d*x]))/b] - Sqrt[3]*E^((3*I)*((2*a)/b + ArcS
in[c + d*x]))*Sqrt[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((3*I)*(a + b*ArcSin[c + d*x]))/b]))/(4*b*d*E^(((
3*I)*(a + b*ArcSin[c + d*x]))/b)*Sqrt[a + b*ArcSin[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 0.33, size = 326, normalized size = 1.16

method result size
default \(\frac {e^{2} \left (\sqrt {a +b \arcsin \left (d x +c \right )}\, \cos \left (\frac {a}{b}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}+\sqrt {a +b \arcsin \left (d x +c \right )}\, \sin \left (\frac {a}{b}\right ) \FresnelC \left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}-\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \cos \left (\frac {3 a}{b}\right ) \mathrm {S}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) \sqrt {-\frac {3}{b}}\, \sqrt {\pi }-\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \sin \left (\frac {3 a}{b}\right ) \FresnelC \left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) \sqrt {-\frac {3}{b}}\, \sqrt {\pi }+\cos \left (-\frac {3 \left (a +b \arcsin \left (d x +c \right )\right )}{b}+\frac {3 a}{b}\right )-\cos \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right )\right )}{2 d b \sqrt {a +b \arcsin \left (d x +c \right )}}\) \(326\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/2/d*e^2/b*((a+b*arcsin(d*x+c))^(1/2)*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/
2)/b)*(-1/b)^(1/2)*Pi^(1/2)*2^(1/2)+(-1/b)^(1/2)*2^(1/2)*(a+b*arcsin(d*x+c))^(1/2)*sin(a/b)*FresnelC(2^(1/2)/P
i^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*Pi^(1/2)-2^(1/2)*(a+b*arcsin(d*x+c))^(1/2)*cos(3*a/b)*Fresne
lS(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*(-3/b)^(1/2)*Pi^(1/2)-2^(1/2)*(a+b*arcsin(d*x+
c))^(1/2)*sin(3*a/b)*FresnelC(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*(-3/b)^(1/2)*Pi^(1/
2)+cos(-3*(a+b*arcsin(d*x+c))/b+3*a/b)-cos(-(a+b*arcsin(d*x+c))/b+a/b))/(a+b*arcsin(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((d*x*e + c*e)^2/(b*arcsin(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} e^{2} \left (\int \frac {c^{2}}{a \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}}\, dx + \int \frac {d^{2} x^{2}}{a \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}}\, dx + \int \frac {2 c d x}{a \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**2/(a+b*asin(d*x+c))**(3/2),x)

[Out]

e**2*(Integral(c**2/(a*sqrt(a + b*asin(c + d*x)) + b*sqrt(a + b*asin(c + d*x))*asin(c + d*x)), x) + Integral(d
**2*x**2/(a*sqrt(a + b*asin(c + d*x)) + b*sqrt(a + b*asin(c + d*x))*asin(c + d*x)), x) + Integral(2*c*d*x/(a*s
qrt(a + b*asin(c + d*x)) + b*sqrt(a + b*asin(c + d*x))*asin(c + d*x)), x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)^2/(b*arcsin(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (c\,e+d\,e\,x\right )}^2}{{\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)^2/(a + b*asin(c + d*x))^(3/2),x)

[Out]

int((c*e + d*e*x)^2/(a + b*asin(c + d*x))^(3/2), x)

________________________________________________________________________________________