3.4.52 \(\int x^6 (a+b \text {ArcSin}(c x^2)) \, dx\) [352]

Optimal. Leaf size=86 \[ \frac {10 b x \sqrt {1-c^2 x^4}}{147 c^3}+\frac {2 b x^5 \sqrt {1-c^2 x^4}}{49 c}+\frac {1}{7} x^7 \left (a+b \text {ArcSin}\left (c x^2\right )\right )-\frac {10 b F\left (\left .\text {ArcSin}\left (\sqrt {c} x\right )\right |-1\right )}{147 c^{7/2}} \]

[Out]

1/7*x^7*(a+b*arcsin(c*x^2))-10/147*b*EllipticF(x*c^(1/2),I)/c^(7/2)+10/147*b*x*(-c^2*x^4+1)^(1/2)/c^3+2/49*b*x
^5*(-c^2*x^4+1)^(1/2)/c

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {4926, 12, 327, 227} \begin {gather*} \frac {1}{7} x^7 \left (a+b \text {ArcSin}\left (c x^2\right )\right )-\frac {10 b F\left (\left .\text {ArcSin}\left (\sqrt {c} x\right )\right |-1\right )}{147 c^{7/2}}+\frac {2 b x^5 \sqrt {1-c^2 x^4}}{49 c}+\frac {10 b x \sqrt {1-c^2 x^4}}{147 c^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^6*(a + b*ArcSin[c*x^2]),x]

[Out]

(10*b*x*Sqrt[1 - c^2*x^4])/(147*c^3) + (2*b*x^5*Sqrt[1 - c^2*x^4])/(49*c) + (x^7*(a + b*ArcSin[c*x^2]))/7 - (1
0*b*EllipticF[ArcSin[Sqrt[c]*x], -1])/(147*c^(7/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 4926

Int[((a_.) + ArcSin[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*((a + b*ArcSin[
u])/(d*(m + 1))), x] - Dist[b/(d*(m + 1)), Int[SimplifyIntegrand[(c + d*x)^(m + 1)*(D[u, x]/Sqrt[1 - u^2]), x]
, x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] &&  !FunctionOfQ[(c + d*x)^(
m + 1), u, x] &&  !FunctionOfExponentialQ[u, x]

Rubi steps

\begin {align*} \int x^6 \left (a+b \sin ^{-1}\left (c x^2\right )\right ) \, dx &=\frac {1}{7} x^7 \left (a+b \sin ^{-1}\left (c x^2\right )\right )-\frac {1}{7} b \int \frac {2 c x^8}{\sqrt {1-c^2 x^4}} \, dx\\ &=\frac {1}{7} x^7 \left (a+b \sin ^{-1}\left (c x^2\right )\right )-\frac {1}{7} (2 b c) \int \frac {x^8}{\sqrt {1-c^2 x^4}} \, dx\\ &=\frac {2 b x^5 \sqrt {1-c^2 x^4}}{49 c}+\frac {1}{7} x^7 \left (a+b \sin ^{-1}\left (c x^2\right )\right )-\frac {(10 b) \int \frac {x^4}{\sqrt {1-c^2 x^4}} \, dx}{49 c}\\ &=\frac {10 b x \sqrt {1-c^2 x^4}}{147 c^3}+\frac {2 b x^5 \sqrt {1-c^2 x^4}}{49 c}+\frac {1}{7} x^7 \left (a+b \sin ^{-1}\left (c x^2\right )\right )-\frac {(10 b) \int \frac {1}{\sqrt {1-c^2 x^4}} \, dx}{147 c^3}\\ &=\frac {10 b x \sqrt {1-c^2 x^4}}{147 c^3}+\frac {2 b x^5 \sqrt {1-c^2 x^4}}{49 c}+\frac {1}{7} x^7 \left (a+b \sin ^{-1}\left (c x^2\right )\right )-\frac {10 b F\left (\left .\sin ^{-1}\left (\sqrt {c} x\right )\right |-1\right )}{147 c^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.14, size = 82, normalized size = 0.95 \begin {gather*} \frac {1}{147} \left (21 a x^7+\frac {2 b x \sqrt {1-c^2 x^4} \left (5+3 c^2 x^4\right )}{c^3}+21 b x^7 \text {ArcSin}\left (c x^2\right )-\frac {10 i b F\left (\left .i \sinh ^{-1}\left (\sqrt {-c} x\right )\right |-1\right )}{(-c)^{7/2}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^6*(a + b*ArcSin[c*x^2]),x]

[Out]

(21*a*x^7 + (2*b*x*Sqrt[1 - c^2*x^4]*(5 + 3*c^2*x^4))/c^3 + 21*b*x^7*ArcSin[c*x^2] - ((10*I)*b*EllipticF[I*Arc
Sinh[Sqrt[-c]*x], -1])/(-c)^(7/2))/147

________________________________________________________________________________________

Maple [A]
time = 0.01, size = 108, normalized size = 1.26

method result size
default \(\frac {x^{7} a}{7}+b \left (\frac {x^{7} \arcsin \left (c \,x^{2}\right )}{7}-\frac {2 c \left (-\frac {x^{5} \sqrt {-c^{2} x^{4}+1}}{7 c^{2}}-\frac {5 x \sqrt {-c^{2} x^{4}+1}}{21 c^{4}}+\frac {5 \sqrt {-c \,x^{2}+1}\, \sqrt {c \,x^{2}+1}\, \EllipticF \left (x \sqrt {c}, i\right )}{21 c^{\frac {9}{2}} \sqrt {-c^{2} x^{4}+1}}\right )}{7}\right )\) \(108\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6*(a+b*arcsin(c*x^2)),x,method=_RETURNVERBOSE)

[Out]

1/7*x^7*a+b*(1/7*x^7*arcsin(c*x^2)-2/7*c*(-1/7/c^2*x^5*(-c^2*x^4+1)^(1/2)-5/21/c^4*x*(-c^2*x^4+1)^(1/2)+5/21/c
^(9/2)*(-c*x^2+1)^(1/2)*(c*x^2+1)^(1/2)/(-c^2*x^4+1)^(1/2)*EllipticF(x*c^(1/2),I)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6*(a+b*arcsin(c*x^2)),x, algorithm="maxima")

[Out]

1/7*a*x^7 + 1/7*(x^7*arctan2(c*x^2, sqrt(c*x^2 + 1)*sqrt(-c*x^2 + 1)) + 14*c*integrate(1/7*x^8*e^(1/2*log(c*x^
2 + 1) + 1/2*log(-c*x^2 + 1))/(c^4*x^8 - c^2*x^4 + (c^2*x^4 - 1)*e^(log(c*x^2 + 1) + log(-c*x^2 + 1))), x))*b

________________________________________________________________________________________

Fricas [A]
time = 0.81, size = 58, normalized size = 0.67 \begin {gather*} \frac {21 \, b c^{3} x^{7} \arcsin \left (c x^{2}\right ) + 21 \, a c^{3} x^{7} + 2 \, {\left (3 \, b c^{2} x^{5} + 5 \, b x\right )} \sqrt {-c^{2} x^{4} + 1}}{147 \, c^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6*(a+b*arcsin(c*x^2)),x, algorithm="fricas")

[Out]

1/147*(21*b*c^3*x^7*arcsin(c*x^2) + 21*a*c^3*x^7 + 2*(3*b*c^2*x^5 + 5*b*x)*sqrt(-c^2*x^4 + 1))/c^3

________________________________________________________________________________________

Sympy [A]
time = 1.66, size = 58, normalized size = 0.67 \begin {gather*} \frac {a x^{7}}{7} - \frac {b c x^{9} \Gamma \left (\frac {9}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {9}{4} \\ \frac {13}{4} \end {matrix}\middle | {c^{2} x^{4} e^{2 i \pi }} \right )}}{14 \Gamma \left (\frac {13}{4}\right )} + \frac {b x^{7} \operatorname {asin}{\left (c x^{2} \right )}}{7} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**6*(a+b*asin(c*x**2)),x)

[Out]

a*x**7/7 - b*c*x**9*gamma(9/4)*hyper((1/2, 9/4), (13/4,), c**2*x**4*exp_polar(2*I*pi))/(14*gamma(13/4)) + b*x*
*7*asin(c*x**2)/7

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6*(a+b*arcsin(c*x^2)),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x^2) + a)*x^6, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x^6\,\left (a+b\,\mathrm {asin}\left (c\,x^2\right )\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6*(a + b*asin(c*x^2)),x)

[Out]

int(x^6*(a + b*asin(c*x^2)), x)

________________________________________________________________________________________