3.1.33 \(\int (f+g x) \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x)) \, dx\) [33]

Optimal. Leaf size=238 \[ \frac {b g x \sqrt {d-c^2 d x^2}}{3 c \sqrt {1-c^2 x^2}}-\frac {b c f x^2 \sqrt {d-c^2 d x^2}}{4 \sqrt {1-c^2 x^2}}-\frac {b c g x^3 \sqrt {d-c^2 d x^2}}{9 \sqrt {1-c^2 x^2}}+\frac {1}{2} f x \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))-\frac {g \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))}{3 c^2}+\frac {f \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{4 b c \sqrt {1-c^2 x^2}} \]

[Out]

1/2*f*x*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2)-1/3*g*(-c^2*x^2+1)*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2)/c^2+1
/3*b*g*x*(-c^2*d*x^2+d)^(1/2)/c/(-c^2*x^2+1)^(1/2)-1/4*b*c*f*x^2*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)-1/9*b
*c*g*x^3*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)+1/4*f*(a+b*arcsin(c*x))^2*(-c^2*d*x^2+d)^(1/2)/b/c/(-c^2*x^2+
1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.17, antiderivative size = 238, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {4861, 4847, 4741, 4737, 30, 4767} \begin {gather*} \frac {1}{2} f x \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))+\frac {f \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{4 b c \sqrt {1-c^2 x^2}}-\frac {g \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))}{3 c^2}-\frac {b c f x^2 \sqrt {d-c^2 d x^2}}{4 \sqrt {1-c^2 x^2}}+\frac {b g x \sqrt {d-c^2 d x^2}}{3 c \sqrt {1-c^2 x^2}}-\frac {b c g x^3 \sqrt {d-c^2 d x^2}}{9 \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(f + g*x)*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]),x]

[Out]

(b*g*x*Sqrt[d - c^2*d*x^2])/(3*c*Sqrt[1 - c^2*x^2]) - (b*c*f*x^2*Sqrt[d - c^2*d*x^2])/(4*Sqrt[1 - c^2*x^2]) -
(b*c*g*x^3*Sqrt[d - c^2*d*x^2])/(9*Sqrt[1 - c^2*x^2]) + (f*x*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/2 - (g*(
1 - c^2*x^2)*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/(3*c^2) + (f*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/
(4*b*c*Sqrt[1 - c^2*x^2])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 4737

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*Si
mp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c
^2*d + e, 0] && NeQ[n, -1]

Rule 4741

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[x*Sqrt[d + e*x^2]*((
a + b*ArcSin[c*x])^n/2), x] + (Dist[(1/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[(a + b*ArcSin[c*x])^n/S
qrt[1 - c^2*x^2], x], x] - Dist[b*c*(n/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[x*(a + b*ArcSin[c*x])^(
n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]

Rule 4767

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(
p + 1)*((a + b*ArcSin[c*x])^n/(2*e*(p + 1))), x] + Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p
], Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*
d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 4847

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g},
 x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d, 0] && IGtQ[n, 0] && (m == 1 || p > 0 ||
(n == 1 && p > -1) || (m == 2 && p < -2))

Rule 4861

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Dist[Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f + g*x)^m*(1 - c^2*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] /; F
reeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p - 1/2] &&  !GtQ[d, 0]

Rubi steps

\begin {align*} \int (f+g x) \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right ) \, dx &=\frac {\sqrt {d-c^2 d x^2} \int (f+g x) \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \, dx}{\sqrt {1-c^2 x^2}}\\ &=\frac {\sqrt {d-c^2 d x^2} \int \left (f \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )+g x \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )\right ) \, dx}{\sqrt {1-c^2 x^2}}\\ &=\frac {\left (f \sqrt {d-c^2 d x^2}\right ) \int \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \, dx}{\sqrt {1-c^2 x^2}}+\frac {\left (g \sqrt {d-c^2 d x^2}\right ) \int x \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \, dx}{\sqrt {1-c^2 x^2}}\\ &=\frac {1}{2} f x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )-\frac {g \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{3 c^2}+\frac {\left (f \sqrt {d-c^2 d x^2}\right ) \int \frac {a+b \sin ^{-1}(c x)}{\sqrt {1-c^2 x^2}} \, dx}{2 \sqrt {1-c^2 x^2}}-\frac {\left (b c f \sqrt {d-c^2 d x^2}\right ) \int x \, dx}{2 \sqrt {1-c^2 x^2}}+\frac {\left (b g \sqrt {d-c^2 d x^2}\right ) \int \left (1-c^2 x^2\right ) \, dx}{3 c \sqrt {1-c^2 x^2}}\\ &=\frac {b g x \sqrt {d-c^2 d x^2}}{3 c \sqrt {1-c^2 x^2}}-\frac {b c f x^2 \sqrt {d-c^2 d x^2}}{4 \sqrt {1-c^2 x^2}}-\frac {b c g x^3 \sqrt {d-c^2 d x^2}}{9 \sqrt {1-c^2 x^2}}+\frac {1}{2} f x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )-\frac {g \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{3 c^2}+\frac {f \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{4 b c \sqrt {1-c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.20, size = 132, normalized size = 0.55 \begin {gather*} \frac {\sqrt {d-c^2 d x^2} \left (-9 b c f x^2-\frac {4 b g x \left (-3+c^2 x^2\right )}{c}+18 f x \sqrt {1-c^2 x^2} (a+b \text {ArcSin}(c x))-\frac {12 g \left (1-c^2 x^2\right )^{3/2} (a+b \text {ArcSin}(c x))}{c^2}+\frac {9 f (a+b \text {ArcSin}(c x))^2}{b c}\right )}{36 \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(f + g*x)*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]),x]

[Out]

(Sqrt[d - c^2*d*x^2]*(-9*b*c*f*x^2 - (4*b*g*x*(-3 + c^2*x^2))/c + 18*f*x*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])
 - (12*g*(1 - c^2*x^2)^(3/2)*(a + b*ArcSin[c*x]))/c^2 + (9*f*(a + b*ArcSin[c*x])^2)/(b*c)))/(36*Sqrt[1 - c^2*x
^2])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.50, size = 628, normalized size = 2.64

method result size
default \(-\frac {a g \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{3 c^{2} d}+\frac {a f x \sqrt {-c^{2} d \,x^{2}+d}}{2}+\frac {a f d \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{2 \sqrt {c^{2} d}}+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2} f}{4 c \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (4 c^{4} x^{4}-5 c^{2} x^{2}-4 i \sqrt {-c^{2} x^{2}+1}\, x^{3} c^{3}+3 i \sqrt {-c^{2} x^{2}+1}\, x c +1\right ) g \left (i+3 \arcsin \left (c x \right )\right )}{72 c^{2} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-2 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}+2 c^{3} x^{3}+i \sqrt {-c^{2} x^{2}+1}-2 c x \right ) f \left (i+2 \arcsin \left (c x \right )\right )}{16 c \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i \sqrt {-c^{2} x^{2}+1}\, x c -1\right ) g \left (\arcsin \left (c x \right )+i\right )}{8 c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, x c +c^{2} x^{2}-1\right ) g \left (\arcsin \left (c x \right )-i\right )}{8 c^{2} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}+2 c^{3} x^{3}-i \sqrt {-c^{2} x^{2}+1}-2 c x \right ) f \left (-i+2 \arcsin \left (c x \right )\right )}{16 c \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (4 i \sqrt {-c^{2} x^{2}+1}\, x^{3} c^{3}+4 c^{4} x^{4}-3 i \sqrt {-c^{2} x^{2}+1}\, x c -5 c^{2} x^{2}+1\right ) g \left (-i+3 \arcsin \left (c x \right )\right )}{72 c^{2} \left (c^{2} x^{2}-1\right )}\right )\) \(628\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/3*a*g/c^2/d*(-c^2*d*x^2+d)^(3/2)+1/2*a*f*x*(-c^2*d*x^2+d)^(1/2)+1/2*a*f*d/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2
)*x/(-c^2*d*x^2+d)^(1/2))+b*(-1/4*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c/(c^2*x^2-1)*arcsin(c*x)^2*f+1/72
*(-d*(c^2*x^2-1))^(1/2)*(4*c^4*x^4-5*c^2*x^2-4*I*(-c^2*x^2+1)^(1/2)*x^3*c^3+3*I*(-c^2*x^2+1)^(1/2)*x*c+1)*g*(I
+3*arcsin(c*x))/c^2/(c^2*x^2-1)+1/16*(-d*(c^2*x^2-1))^(1/2)*(-2*I*(-c^2*x^2+1)^(1/2)*x^2*c^2+2*c^3*x^3+I*(-c^2
*x^2+1)^(1/2)-2*c*x)*f*(I+2*arcsin(c*x))/c/(c^2*x^2-1)-1/8*(-d*(c^2*x^2-1))^(1/2)*(c^2*x^2-I*(-c^2*x^2+1)^(1/2
)*x*c-1)*g*(arcsin(c*x)+I)/c^2/(c^2*x^2-1)-1/8*(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)*x*c+c^2*x^2-1)*g*(
arcsin(c*x)-I)/c^2/(c^2*x^2-1)+1/16*(-d*(c^2*x^2-1))^(1/2)*(2*I*(-c^2*x^2+1)^(1/2)*x^2*c^2+2*c^3*x^3-I*(-c^2*x
^2+1)^(1/2)-2*c*x)*f*(-I+2*arcsin(c*x))/c/(c^2*x^2-1)+1/72*(-d*(c^2*x^2-1))^(1/2)*(4*I*(-c^2*x^2+1)^(1/2)*x^3*
c^3+4*c^4*x^4-3*I*(-c^2*x^2+1)^(1/2)*x*c-5*c^2*x^2+1)*g*(-I+3*arcsin(c*x))/c^2/(c^2*x^2-1))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

1/2*(sqrt(-c^2*d*x^2 + d)*x + sqrt(d)*arcsin(c*x)/c)*a*f + sqrt(d)*integrate((b*g*x + b*f)*sqrt(c*x + 1)*sqrt(
-c*x + 1)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)), x) - 1/3*(-c^2*d*x^2 + d)^(3/2)*a*g/(c^2*d)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(a*g*x + a*f + (b*g*x + b*f)*arcsin(c*x)), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right ) \left (f + g x\right )\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*asin(c*x))*(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*asin(c*x))*(f + g*x), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:sym2poly/r2sym(co
nst gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \left (f+g\,x\right )\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,\sqrt {d-c^2\,d\,x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f + g*x)*(a + b*asin(c*x))*(d - c^2*d*x^2)^(1/2),x)

[Out]

int((f + g*x)*(a + b*asin(c*x))*(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________