3.1.38 \(\int (f+g x) (d-c^2 d x^2)^{3/2} (a+b \text {ArcSin}(c x)) \, dx\) [38]

Optimal. Leaf size=370 \[ \frac {b d g x \sqrt {d-c^2 d x^2}}{5 c \sqrt {1-c^2 x^2}}-\frac {5 b c d f x^2 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}-\frac {2 b c d g x^3 \sqrt {d-c^2 d x^2}}{15 \sqrt {1-c^2 x^2}}+\frac {b c^3 d f x^4 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}+\frac {b c^3 d g x^5 \sqrt {d-c^2 d x^2}}{25 \sqrt {1-c^2 x^2}}+\frac {3}{8} d f x \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))+\frac {1}{4} d f x \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))-\frac {d g \left (1-c^2 x^2\right )^2 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))}{5 c^2}+\frac {3 d f \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{16 b c \sqrt {1-c^2 x^2}} \]

[Out]

3/8*d*f*x*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2)+1/4*d*f*x*(-c^2*x^2+1)*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2)
-1/5*d*g*(-c^2*x^2+1)^2*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2)/c^2+1/5*b*d*g*x*(-c^2*d*x^2+d)^(1/2)/c/(-c^2*x^
2+1)^(1/2)-5/16*b*c*d*f*x^2*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)-2/15*b*c*d*g*x^3*(-c^2*d*x^2+d)^(1/2)/(-c^
2*x^2+1)^(1/2)+1/16*b*c^3*d*f*x^4*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)+1/25*b*c^3*d*g*x^5*(-c^2*d*x^2+d)^(1
/2)/(-c^2*x^2+1)^(1/2)+3/16*d*f*(a+b*arcsin(c*x))^2*(-c^2*d*x^2+d)^(1/2)/b/c/(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.23, antiderivative size = 370, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.310, Rules used = {4861, 4847, 4743, 4741, 4737, 30, 14, 4767, 200} \begin {gather*} \frac {3}{8} d f x \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))+\frac {1}{4} d f x \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))+\frac {3 d f \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{16 b c \sqrt {1-c^2 x^2}}-\frac {d g \left (1-c^2 x^2\right )^2 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))}{5 c^2}-\frac {5 b c d f x^2 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}+\frac {b d g x \sqrt {d-c^2 d x^2}}{5 c \sqrt {1-c^2 x^2}}-\frac {2 b c d g x^3 \sqrt {d-c^2 d x^2}}{15 \sqrt {1-c^2 x^2}}+\frac {b c^3 d f x^4 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}+\frac {b c^3 d g x^5 \sqrt {d-c^2 d x^2}}{25 \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(f + g*x)*(d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]),x]

[Out]

(b*d*g*x*Sqrt[d - c^2*d*x^2])/(5*c*Sqrt[1 - c^2*x^2]) - (5*b*c*d*f*x^2*Sqrt[d - c^2*d*x^2])/(16*Sqrt[1 - c^2*x
^2]) - (2*b*c*d*g*x^3*Sqrt[d - c^2*d*x^2])/(15*Sqrt[1 - c^2*x^2]) + (b*c^3*d*f*x^4*Sqrt[d - c^2*d*x^2])/(16*Sq
rt[1 - c^2*x^2]) + (b*c^3*d*g*x^5*Sqrt[d - c^2*d*x^2])/(25*Sqrt[1 - c^2*x^2]) + (3*d*f*x*Sqrt[d - c^2*d*x^2]*(
a + b*ArcSin[c*x]))/8 + (d*f*x*(1 - c^2*x^2)*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/4 - (d*g*(1 - c^2*x^2)^2
*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/(5*c^2) + (3*d*f*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/(16*b*c*
Sqrt[1 - c^2*x^2])

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 200

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^n)^p, x], x] /; FreeQ[{a, b}, x]
&& IGtQ[n, 0] && IGtQ[p, 0]

Rule 4737

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*Si
mp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c
^2*d + e, 0] && NeQ[n, -1]

Rule 4741

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[x*Sqrt[d + e*x^2]*((
a + b*ArcSin[c*x])^n/2), x] + (Dist[(1/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[(a + b*ArcSin[c*x])^n/S
qrt[1 - c^2*x^2], x], x] - Dist[b*c*(n/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[x*(a + b*ArcSin[c*x])^(
n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]

Rule 4743

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[x*(d + e*x^2)^p*((
a + b*ArcSin[c*x])^n/(2*p + 1)), x] + (Dist[2*d*(p/(2*p + 1)), Int[(d + e*x^2)^(p - 1)*(a + b*ArcSin[c*x])^n,
x], x] - Dist[b*c*(n/(2*p + 1))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[x*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcS
in[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0]

Rule 4767

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(
p + 1)*((a + b*ArcSin[c*x])^n/(2*e*(p + 1))), x] + Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p
], Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*
d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 4847

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g},
 x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d, 0] && IGtQ[n, 0] && (m == 1 || p > 0 ||
(n == 1 && p > -1) || (m == 2 && p < -2))

Rule 4861

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Dist[Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f + g*x)^m*(1 - c^2*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] /; F
reeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p - 1/2] &&  !GtQ[d, 0]

Rubi steps

\begin {align*} \int (f+g x) \left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right ) \, dx &=\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \int (f+g x) \left (1-c^2 x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right ) \, dx}{\sqrt {1-c^2 x^2}}\\ &=\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \int \left (f \left (1-c^2 x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )+g x \left (1-c^2 x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )\right ) \, dx}{\sqrt {1-c^2 x^2}}\\ &=\frac {\left (d f \sqrt {d-c^2 d x^2}\right ) \int \left (1-c^2 x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right ) \, dx}{\sqrt {1-c^2 x^2}}+\frac {\left (d g \sqrt {d-c^2 d x^2}\right ) \int x \left (1-c^2 x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right ) \, dx}{\sqrt {1-c^2 x^2}}\\ &=\frac {1}{4} d f x \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )-\frac {d g \left (1-c^2 x^2\right )^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{5 c^2}+\frac {\left (3 d f \sqrt {d-c^2 d x^2}\right ) \int \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \, dx}{4 \sqrt {1-c^2 x^2}}-\frac {\left (b c d f \sqrt {d-c^2 d x^2}\right ) \int x \left (1-c^2 x^2\right ) \, dx}{4 \sqrt {1-c^2 x^2}}+\frac {\left (b d g \sqrt {d-c^2 d x^2}\right ) \int \left (1-c^2 x^2\right )^2 \, dx}{5 c \sqrt {1-c^2 x^2}}\\ &=\frac {3}{8} d f x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {1}{4} d f x \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )-\frac {d g \left (1-c^2 x^2\right )^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{5 c^2}+\frac {\left (3 d f \sqrt {d-c^2 d x^2}\right ) \int \frac {a+b \sin ^{-1}(c x)}{\sqrt {1-c^2 x^2}} \, dx}{8 \sqrt {1-c^2 x^2}}-\frac {\left (b c d f \sqrt {d-c^2 d x^2}\right ) \int \left (x-c^2 x^3\right ) \, dx}{4 \sqrt {1-c^2 x^2}}-\frac {\left (3 b c d f \sqrt {d-c^2 d x^2}\right ) \int x \, dx}{8 \sqrt {1-c^2 x^2}}+\frac {\left (b d g \sqrt {d-c^2 d x^2}\right ) \int \left (1-2 c^2 x^2+c^4 x^4\right ) \, dx}{5 c \sqrt {1-c^2 x^2}}\\ &=\frac {b d g x \sqrt {d-c^2 d x^2}}{5 c \sqrt {1-c^2 x^2}}-\frac {5 b c d f x^2 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}-\frac {2 b c d g x^3 \sqrt {d-c^2 d x^2}}{15 \sqrt {1-c^2 x^2}}+\frac {b c^3 d f x^4 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}+\frac {b c^3 d g x^5 \sqrt {d-c^2 d x^2}}{25 \sqrt {1-c^2 x^2}}+\frac {3}{8} d f x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {1}{4} d f x \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )-\frac {d g \left (1-c^2 x^2\right )^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{5 c^2}+\frac {3 d f \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{16 b c \sqrt {1-c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.22, size = 216, normalized size = 0.58 \begin {gather*} \frac {d \sqrt {d-c^2 d x^2} \left (225 a^2 c f-30 a b \sqrt {1-c^2 x^2} \left (8 g \left (-1+c^2 x^2\right )^2+5 c^2 f x \left (-5+2 c^2 x^2\right )\right )+b^2 c x \left (75 c^2 f x \left (-5+c^2 x^2\right )+16 g \left (15-10 c^2 x^2+3 c^4 x^4\right )\right )+30 b \left (15 a c f+b \sqrt {1-c^2 x^2} \left (5 c^2 f x \left (5-2 c^2 x^2\right )-8 g \left (-1+c^2 x^2\right )^2\right )\right ) \text {ArcSin}(c x)+225 b^2 c f \text {ArcSin}(c x)^2\right )}{1200 b c^2 \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(f + g*x)*(d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]),x]

[Out]

(d*Sqrt[d - c^2*d*x^2]*(225*a^2*c*f - 30*a*b*Sqrt[1 - c^2*x^2]*(8*g*(-1 + c^2*x^2)^2 + 5*c^2*f*x*(-5 + 2*c^2*x
^2)) + b^2*c*x*(75*c^2*f*x*(-5 + c^2*x^2) + 16*g*(15 - 10*c^2*x^2 + 3*c^4*x^4)) + 30*b*(15*a*c*f + b*Sqrt[1 -
c^2*x^2]*(5*c^2*f*x*(5 - 2*c^2*x^2) - 8*g*(-1 + c^2*x^2)^2))*ArcSin[c*x] + 225*b^2*c*f*ArcSin[c*x]^2))/(1200*b
*c^2*Sqrt[1 - c^2*x^2])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.49, size = 1014, normalized size = 2.74

method result size
default \(-\frac {a g \left (-c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{5 c^{2} d}+\frac {a f x \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{4}+\frac {3 a f d x \sqrt {-c^{2} d \,x^{2}+d}}{8}+\frac {3 a f \,d^{2} \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{8 \sqrt {c^{2} d}}+b \left (-\frac {3 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2} f d}{16 c \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (16 c^{6} x^{6}-28 c^{4} x^{4}-16 i \sqrt {-c^{2} x^{2}+1}\, x^{5} c^{5}+13 c^{2} x^{2}+20 i \sqrt {-c^{2} x^{2}+1}\, x^{3} c^{3}-5 i \sqrt {-c^{2} x^{2}+1}\, x c -1\right ) g \left (i+5 \arcsin \left (c x \right )\right ) d}{800 c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-8 i \sqrt {-c^{2} x^{2}+1}\, x^{4} c^{4}+8 c^{5} x^{5}+8 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}-12 c^{3} x^{3}-i \sqrt {-c^{2} x^{2}+1}+4 c x \right ) f \left (i+4 \arcsin \left (c x \right )\right ) d}{256 c \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i \sqrt {-c^{2} x^{2}+1}\, x c -1\right ) g \left (\arcsin \left (c x \right )+i\right ) d}{16 c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, x c +c^{2} x^{2}-1\right ) g \left (\arcsin \left (c x \right )-i\right ) d}{16 c^{2} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}+2 c^{3} x^{3}-i \sqrt {-c^{2} x^{2}+1}-2 c x \right ) f \left (-i+2 \arcsin \left (c x \right )\right ) d}{16 c \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (4 i \sqrt {-c^{2} x^{2}+1}\, x^{3} c^{3}+4 c^{4} x^{4}-3 i \sqrt {-c^{2} x^{2}+1}\, x c -5 c^{2} x^{2}+1\right ) g \left (-i+3 \arcsin \left (c x \right )\right ) d}{96 c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, x c +c^{2} x^{2}-1\right ) g \left (11 i+45 \arcsin \left (c x \right )\right ) \cos \left (4 \arcsin \left (c x \right )\right ) d}{1200 c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i x^{2} c^{2}-c x \sqrt {-c^{2} x^{2}+1}-i\right ) g \left (7 i+15 \arcsin \left (c x \right )\right ) \sin \left (4 \arcsin \left (c x \right )\right ) d}{600 c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i x^{2} c^{2}-c x \sqrt {-c^{2} x^{2}+1}-i\right ) f \left (17 i+28 \arcsin \left (c x \right )\right ) \cos \left (3 \arcsin \left (c x \right )\right ) d}{256 c \left (c^{2} x^{2}-1\right )}+\frac {3 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, x c +c^{2} x^{2}-1\right ) f \left (5 i+12 \arcsin \left (c x \right )\right ) \sin \left (3 \arcsin \left (c x \right )\right ) d}{256 c \left (c^{2} x^{2}-1\right )}\right )\) \(1014\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x)),x,method=_RETURNVERBOSE)

[Out]

-1/5*a*g/c^2/d*(-c^2*d*x^2+d)^(5/2)+1/4*a*f*x*(-c^2*d*x^2+d)^(3/2)+3/8*a*f*d*x*(-c^2*d*x^2+d)^(1/2)+3/8*a*f*d^
2/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))+b*(-3/16*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2
)/c/(c^2*x^2-1)*arcsin(c*x)^2*f*d-1/800*(-d*(c^2*x^2-1))^(1/2)*(16*c^6*x^6-28*c^4*x^4-16*I*(-c^2*x^2+1)^(1/2)*
x^5*c^5+13*c^2*x^2+20*I*(-c^2*x^2+1)^(1/2)*x^3*c^3-5*I*(-c^2*x^2+1)^(1/2)*x*c-1)*g*(I+5*arcsin(c*x))*d/c^2/(c^
2*x^2-1)-1/256*(-d*(c^2*x^2-1))^(1/2)*(-8*I*(-c^2*x^2+1)^(1/2)*x^4*c^4+8*c^5*x^5+8*I*(-c^2*x^2+1)^(1/2)*x^2*c^
2-12*c^3*x^3-I*(-c^2*x^2+1)^(1/2)+4*c*x)*f*(I+4*arcsin(c*x))*d/c/(c^2*x^2-1)-1/16*(-d*(c^2*x^2-1))^(1/2)*(c^2*
x^2-I*(-c^2*x^2+1)^(1/2)*x*c-1)*g*(arcsin(c*x)+I)*d/c^2/(c^2*x^2-1)-1/16*(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1
)^(1/2)*x*c+c^2*x^2-1)*g*(arcsin(c*x)-I)*d/c^2/(c^2*x^2-1)+1/16*(-d*(c^2*x^2-1))^(1/2)*(2*I*(-c^2*x^2+1)^(1/2)
*x^2*c^2+2*c^3*x^3-I*(-c^2*x^2+1)^(1/2)-2*c*x)*f*(-I+2*arcsin(c*x))*d/c/(c^2*x^2-1)+1/96*(-d*(c^2*x^2-1))^(1/2
)*(4*I*(-c^2*x^2+1)^(1/2)*x^3*c^3+4*c^4*x^4-3*I*(-c^2*x^2+1)^(1/2)*x*c-5*c^2*x^2+1)*g*(-I+3*arcsin(c*x))*d/c^2
/(c^2*x^2-1)-1/1200*(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)*x*c+c^2*x^2-1)*g*(11*I+45*arcsin(c*x))*cos(4*
arcsin(c*x))*d/c^2/(c^2*x^2-1)-1/600*(-d*(c^2*x^2-1))^(1/2)*(I*x^2*c^2-c*x*(-c^2*x^2+1)^(1/2)-I)*g*(7*I+15*arc
sin(c*x))*sin(4*arcsin(c*x))*d/c^2/(c^2*x^2-1)-1/256*(-d*(c^2*x^2-1))^(1/2)*(I*x^2*c^2-c*x*(-c^2*x^2+1)^(1/2)-
I)*f*(17*I+28*arcsin(c*x))*cos(3*arcsin(c*x))*d/c/(c^2*x^2-1)+3/256*(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^(1/
2)*x*c+c^2*x^2-1)*f*(5*I+12*arcsin(c*x))*sin(3*arcsin(c*x))*d/c/(c^2*x^2-1))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x)),x, algorithm="maxima")

[Out]

1/8*(2*(-c^2*d*x^2 + d)^(3/2)*x + 3*sqrt(-c^2*d*x^2 + d)*d*x + 3*d^(3/2)*arcsin(c*x)/c)*a*f - 1/5*(-c^2*d*x^2
+ d)^(5/2)*a*g/(c^2*d) + sqrt(d)*integrate(-(b*c^2*d*g*x^3 + b*c^2*d*f*x^2 - b*d*g*x - b*d*f)*sqrt(c*x + 1)*sq
rt(-c*x + 1)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x)),x, algorithm="fricas")

[Out]

integral(-(a*c^2*d*g*x^3 + a*c^2*d*f*x^2 - a*d*g*x - a*d*f + (b*c^2*d*g*x^3 + b*c^2*d*f*x^2 - b*d*g*x - b*d*f)
*arcsin(c*x))*sqrt(-c^2*d*x^2 + d), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}} \left (a + b \operatorname {asin}{\left (c x \right )}\right ) \left (f + g x\right )\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(-c**2*d*x**2+d)**(3/2)*(a+b*asin(c*x)),x)

[Out]

Integral((-d*(c*x - 1)*(c*x + 1))**(3/2)*(a + b*asin(c*x))*(f + g*x), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x)),x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:sym2poly/r2sym(co
nst gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \left (f+g\,x\right )\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,{\left (d-c^2\,d\,x^2\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f + g*x)*(a + b*asin(c*x))*(d - c^2*d*x^2)^(3/2),x)

[Out]

int((f + g*x)*(a + b*asin(c*x))*(d - c^2*d*x^2)^(3/2), x)

________________________________________________________________________________________