3.1.77 \(\int \frac {(f+g x) (a+b \text {ArcSin}(c x))^2}{(d-c^2 d x^2)^{3/2}} \, dx\) [77]

Optimal. Leaf size=410 \[ \frac {g (a+b \text {ArcSin}(c x))^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {f x (a+b \text {ArcSin}(c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {i f \sqrt {1-c^2 x^2} (a+b \text {ArcSin}(c x))^2}{c d \sqrt {d-c^2 d x^2}}+\frac {4 i b g \sqrt {1-c^2 x^2} (a+b \text {ArcSin}(c x)) \text {ArcTan}\left (e^{i \text {ArcSin}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 b f \sqrt {1-c^2 x^2} (a+b \text {ArcSin}(c x)) \log \left (1+e^{2 i \text {ArcSin}(c x)}\right )}{c d \sqrt {d-c^2 d x^2}}-\frac {2 i b^2 g \sqrt {1-c^2 x^2} \text {PolyLog}\left (2,-i e^{i \text {ArcSin}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 i b^2 g \sqrt {1-c^2 x^2} \text {PolyLog}\left (2,i e^{i \text {ArcSin}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {i b^2 f \sqrt {1-c^2 x^2} \text {PolyLog}\left (2,-e^{2 i \text {ArcSin}(c x)}\right )}{c d \sqrt {d-c^2 d x^2}} \]

[Out]

g*(a+b*arcsin(c*x))^2/c^2/d/(-c^2*d*x^2+d)^(1/2)+f*x*(a+b*arcsin(c*x))^2/d/(-c^2*d*x^2+d)^(1/2)-I*f*(a+b*arcsi
n(c*x))^2*(-c^2*x^2+1)^(1/2)/c/d/(-c^2*d*x^2+d)^(1/2)+4*I*b*g*(a+b*arcsin(c*x))*arctan(I*c*x+(-c^2*x^2+1)^(1/2
))*(-c^2*x^2+1)^(1/2)/c^2/d/(-c^2*d*x^2+d)^(1/2)+2*b*f*(a+b*arcsin(c*x))*ln(1+(I*c*x+(-c^2*x^2+1)^(1/2))^2)*(-
c^2*x^2+1)^(1/2)/c/d/(-c^2*d*x^2+d)^(1/2)-2*I*b^2*g*polylog(2,-I*(I*c*x+(-c^2*x^2+1)^(1/2)))*(-c^2*x^2+1)^(1/2
)/c^2/d/(-c^2*d*x^2+d)^(1/2)+2*I*b^2*g*polylog(2,I*(I*c*x+(-c^2*x^2+1)^(1/2)))*(-c^2*x^2+1)^(1/2)/c^2/d/(-c^2*
d*x^2+d)^(1/2)-I*b^2*f*polylog(2,-(I*c*x+(-c^2*x^2+1)^(1/2))^2)*(-c^2*x^2+1)^(1/2)/c/d/(-c^2*d*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.41, antiderivative size = 410, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 11, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.355, Rules used = {4861, 4847, 4745, 4765, 3800, 2221, 2317, 2438, 4767, 4749, 4266} \begin {gather*} \frac {4 i b g \sqrt {1-c^2 x^2} \text {ArcTan}\left (e^{i \text {ArcSin}(c x)}\right ) (a+b \text {ArcSin}(c x))}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {f x (a+b \text {ArcSin}(c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {i f \sqrt {1-c^2 x^2} (a+b \text {ArcSin}(c x))^2}{c d \sqrt {d-c^2 d x^2}}+\frac {2 b f \sqrt {1-c^2 x^2} \log \left (1+e^{2 i \text {ArcSin}(c x)}\right ) (a+b \text {ArcSin}(c x))}{c d \sqrt {d-c^2 d x^2}}+\frac {g (a+b \text {ArcSin}(c x))^2}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {i b^2 f \sqrt {1-c^2 x^2} \text {Li}_2\left (-e^{2 i \text {ArcSin}(c x)}\right )}{c d \sqrt {d-c^2 d x^2}}-\frac {2 i b^2 g \sqrt {1-c^2 x^2} \text {Li}_2\left (-i e^{i \text {ArcSin}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 i b^2 g \sqrt {1-c^2 x^2} \text {Li}_2\left (i e^{i \text {ArcSin}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((f + g*x)*(a + b*ArcSin[c*x])^2)/(d - c^2*d*x^2)^(3/2),x]

[Out]

(g*(a + b*ArcSin[c*x])^2)/(c^2*d*Sqrt[d - c^2*d*x^2]) + (f*x*(a + b*ArcSin[c*x])^2)/(d*Sqrt[d - c^2*d*x^2]) -
(I*f*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/(c*d*Sqrt[d - c^2*d*x^2]) + ((4*I)*b*g*Sqrt[1 - c^2*x^2]*(a + b*
ArcSin[c*x])*ArcTan[E^(I*ArcSin[c*x])])/(c^2*d*Sqrt[d - c^2*d*x^2]) + (2*b*f*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c
*x])*Log[1 + E^((2*I)*ArcSin[c*x])])/(c*d*Sqrt[d - c^2*d*x^2]) - ((2*I)*b^2*g*Sqrt[1 - c^2*x^2]*PolyLog[2, (-I
)*E^(I*ArcSin[c*x])])/(c^2*d*Sqrt[d - c^2*d*x^2]) + ((2*I)*b^2*g*Sqrt[1 - c^2*x^2]*PolyLog[2, I*E^(I*ArcSin[c*
x])])/(c^2*d*Sqrt[d - c^2*d*x^2]) - (I*b^2*f*Sqrt[1 - c^2*x^2]*PolyLog[2, -E^((2*I)*ArcSin[c*x])])/(c*d*Sqrt[d
 - c^2*d*x^2])

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3800

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[I*((c + d*x)^(m + 1)/(d*(m + 1))), x
] - Dist[2*I, Int[(c + d*x)^m*(E^(2*I*(e + f*x))/(1 + E^(2*I*(e + f*x)))), x], x] /; FreeQ[{c, d, e, f}, x] &&
 IGtQ[m, 0]

Rule 4266

Int[csc[(e_.) + Pi*(k_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[-2*(c + d*x)^m*(ArcTanh[E
^(I*k*Pi)*E^(I*(e + f*x))]/f), x] + (-Dist[d*(m/f), Int[(c + d*x)^(m - 1)*Log[1 - E^(I*k*Pi)*E^(I*(e + f*x))],
 x], x] + Dist[d*(m/f), Int[(c + d*x)^(m - 1)*Log[1 + E^(I*k*Pi)*E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e,
f}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 4745

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[x*((a + b*ArcSin[c
*x])^n/(d*Sqrt[d + e*x^2])), x] - Dist[b*c*(n/d)*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]], Int[x*((a + b*ArcSin
[c*x])^(n - 1)/(1 - c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]

Rule 4749

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/(c*d), Subst[Int[(a +
b*x)^n*Sec[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]

Rule 4765

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[-e^(-1), Subst[In
t[(a + b*x)^n*Tan[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]

Rule 4767

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(
p + 1)*((a + b*ArcSin[c*x])^n/(2*e*(p + 1))), x] + Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p
], Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*
d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 4847

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g},
 x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d, 0] && IGtQ[n, 0] && (m == 1 || p > 0 ||
(n == 1 && p > -1) || (m == 2 && p < -2))

Rule 4861

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Dist[Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f + g*x)^m*(1 - c^2*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] /; F
reeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p - 1/2] &&  !GtQ[d, 0]

Rubi steps

\begin {align*} \int \frac {(f+g x) \left (a+b \sin ^{-1}(c x)\right )^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx &=\frac {\sqrt {1-c^2 x^2} \int \frac {(f+g x) \left (a+b \sin ^{-1}(c x)\right )^2}{\left (1-c^2 x^2\right )^{3/2}} \, dx}{d \sqrt {d-c^2 d x^2}}\\ &=\frac {\sqrt {1-c^2 x^2} \int \left (\frac {f \left (a+b \sin ^{-1}(c x)\right )^2}{\left (1-c^2 x^2\right )^{3/2}}+\frac {g x \left (a+b \sin ^{-1}(c x)\right )^2}{\left (1-c^2 x^2\right )^{3/2}}\right ) \, dx}{d \sqrt {d-c^2 d x^2}}\\ &=\frac {\left (f \sqrt {1-c^2 x^2}\right ) \int \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{\left (1-c^2 x^2\right )^{3/2}} \, dx}{d \sqrt {d-c^2 d x^2}}+\frac {\left (g \sqrt {1-c^2 x^2}\right ) \int \frac {x \left (a+b \sin ^{-1}(c x)\right )^2}{\left (1-c^2 x^2\right )^{3/2}} \, dx}{d \sqrt {d-c^2 d x^2}}\\ &=\frac {g \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {f x \left (a+b \sin ^{-1}(c x)\right )^2}{d \sqrt {d-c^2 d x^2}}-\frac {\left (2 b c f \sqrt {1-c^2 x^2}\right ) \int \frac {x \left (a+b \sin ^{-1}(c x)\right )}{1-c^2 x^2} \, dx}{d \sqrt {d-c^2 d x^2}}-\frac {\left (2 b g \sqrt {1-c^2 x^2}\right ) \int \frac {a+b \sin ^{-1}(c x)}{1-c^2 x^2} \, dx}{c d \sqrt {d-c^2 d x^2}}\\ &=\frac {g \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {f x \left (a+b \sin ^{-1}(c x)\right )^2}{d \sqrt {d-c^2 d x^2}}-\frac {\left (2 b f \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int (a+b x) \tan (x) \, dx,x,\sin ^{-1}(c x)\right )}{c d \sqrt {d-c^2 d x^2}}-\frac {\left (2 b g \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int (a+b x) \sec (x) \, dx,x,\sin ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}}\\ &=\frac {g \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {f x \left (a+b \sin ^{-1}(c x)\right )^2}{d \sqrt {d-c^2 d x^2}}-\frac {i f \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c d \sqrt {d-c^2 d x^2}}+\frac {4 i b g \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {\left (4 i b f \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {e^{2 i x} (a+b x)}{1+e^{2 i x}} \, dx,x,\sin ^{-1}(c x)\right )}{c d \sqrt {d-c^2 d x^2}}+\frac {\left (2 b^2 g \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \log \left (1-i e^{i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {\left (2 b^2 g \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \log \left (1+i e^{i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}}\\ &=\frac {g \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {f x \left (a+b \sin ^{-1}(c x)\right )^2}{d \sqrt {d-c^2 d x^2}}-\frac {i f \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c d \sqrt {d-c^2 d x^2}}+\frac {4 i b g \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 b f \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1+e^{2 i \sin ^{-1}(c x)}\right )}{c d \sqrt {d-c^2 d x^2}}-\frac {\left (2 b^2 f \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \log \left (1+e^{2 i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{c d \sqrt {d-c^2 d x^2}}-\frac {\left (2 i b^2 g \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {\log (1-i x)}{x} \, dx,x,e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {\left (2 i b^2 g \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {\log (1+i x)}{x} \, dx,x,e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}\\ &=\frac {g \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {f x \left (a+b \sin ^{-1}(c x)\right )^2}{d \sqrt {d-c^2 d x^2}}-\frac {i f \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c d \sqrt {d-c^2 d x^2}}+\frac {4 i b g \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 b f \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1+e^{2 i \sin ^{-1}(c x)}\right )}{c d \sqrt {d-c^2 d x^2}}-\frac {2 i b^2 g \sqrt {1-c^2 x^2} \text {Li}_2\left (-i e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 i b^2 g \sqrt {1-c^2 x^2} \text {Li}_2\left (i e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {\left (i b^2 f \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,e^{2 i \sin ^{-1}(c x)}\right )}{c d \sqrt {d-c^2 d x^2}}\\ &=\frac {g \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {f x \left (a+b \sin ^{-1}(c x)\right )^2}{d \sqrt {d-c^2 d x^2}}-\frac {i f \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c d \sqrt {d-c^2 d x^2}}+\frac {4 i b g \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 b f \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1+e^{2 i \sin ^{-1}(c x)}\right )}{c d \sqrt {d-c^2 d x^2}}-\frac {2 i b^2 g \sqrt {1-c^2 x^2} \text {Li}_2\left (-i e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 i b^2 g \sqrt {1-c^2 x^2} \text {Li}_2\left (i e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {i b^2 f \sqrt {1-c^2 x^2} \text {Li}_2\left (-e^{2 i \sin ^{-1}(c x)}\right )}{c d \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.91, size = 237, normalized size = 0.58 \begin {gather*} \frac {\sqrt {1-c^2 x^2} \left ((c f-g) \left (-(a+b \text {ArcSin}(c x))^2 \cot \left (\frac {1}{4} (\pi +2 \text {ArcSin}(c x))\right )+i \left ((a+b \text {ArcSin}(c x)) \left (a+b \text {ArcSin}(c x)-4 i b \log \left (1+i e^{-i \text {ArcSin}(c x)}\right )\right )+4 b^2 \text {PolyLog}\left (2,-i e^{-i \text {ArcSin}(c x)}\right )\right )\right )-(c f+g) \left (i \left ((a+b \text {ArcSin}(c x)) \left (a+b \text {ArcSin}(c x)+4 i b \log \left (1+i e^{i \text {ArcSin}(c x)}\right )\right )+4 b^2 \text {PolyLog}\left (2,-i e^{i \text {ArcSin}(c x)}\right )\right )-(a+b \text {ArcSin}(c x))^2 \tan \left (\frac {1}{4} (\pi +2 \text {ArcSin}(c x))\right )\right )\right )}{2 c^2 d \sqrt {d-c^2 d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((f + g*x)*(a + b*ArcSin[c*x])^2)/(d - c^2*d*x^2)^(3/2),x]

[Out]

(Sqrt[1 - c^2*x^2]*((c*f - g)*(-((a + b*ArcSin[c*x])^2*Cot[(Pi + 2*ArcSin[c*x])/4]) + I*((a + b*ArcSin[c*x])*(
a + b*ArcSin[c*x] - (4*I)*b*Log[1 + I/E^(I*ArcSin[c*x])]) + 4*b^2*PolyLog[2, (-I)/E^(I*ArcSin[c*x])])) - (c*f
+ g)*(I*((a + b*ArcSin[c*x])*(a + b*ArcSin[c*x] + (4*I)*b*Log[1 + I*E^(I*ArcSin[c*x])]) + 4*b^2*PolyLog[2, (-I
)*E^(I*ArcSin[c*x])]) - (a + b*ArcSin[c*x])^2*Tan[(Pi + 2*ArcSin[c*x])/4])))/(2*c^2*d*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1045 vs. \(2 (419 ) = 838\).
time = 0.61, size = 1046, normalized size = 2.55

method result size
default \(a^{2} \left (\frac {g}{c^{2} d \sqrt {-c^{2} d \,x^{2}+d}}+\frac {f x}{d \sqrt {-c^{2} d \,x^{2}+d}}\right )+\frac {2 i b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g \dilog \left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )^{2} x f}{d^{2} \left (c^{2} x^{2}-1\right )}-\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )^{2} g}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, f \arcsin \left (c x \right ) \ln \left (1+\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}\right )}{c \,d^{2} \left (c^{2} x^{2}-1\right )}+\frac {2 i a b \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, f \arcsin \left (c x \right )}{c \,d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g \arcsin \left (c x \right ) \ln \left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {2 b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g \arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {i b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, f \polylog \left (2, -\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}\right )}{c \,d^{2} \left (c^{2} x^{2}-1\right )}+\frac {i b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )^{2} \sqrt {-c^{2} x^{2}+1}\, f}{c \,d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 i b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g \dilog \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) x f}{d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) g}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right ) f}{c \,d^{2} \left (c^{2} x^{2}-1\right )}+\frac {2 a b \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right ) g}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-i\right ) f}{c \,d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-i\right ) g}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}\) \(1046\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x,method=_RETURNVERBOSE)

[Out]

a^2*(g/c^2/d/(-c^2*d*x^2+d)^(1/2)+f*x/d/(-c^2*d*x^2+d)^(1/2))-2*I*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2
)/c^2/d^2/(c^2*x^2-1)*g*dilog(1-I*(I*c*x+(-c^2*x^2+1)^(1/2)))-b^2*(-d*(c^2*x^2-1))^(1/2)/d^2/(c^2*x^2-1)*arcsi
n(c*x)^2*x*f-b^2*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*arcsin(c*x)^2*g-2*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*
x^2-1))^(1/2)/c/d^2/(c^2*x^2-1)*f*arcsin(c*x)*ln(1+(I*c*x+(-c^2*x^2+1)^(1/2))^2)+2*I*a*b*(-c^2*x^2+1)^(1/2)*(-
d*(c^2*x^2-1))^(1/2)/c/d^2/(c^2*x^2-1)*f*arcsin(c*x)-2*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(
c^2*x^2-1)*g*arcsin(c*x)*ln(1+I*(I*c*x+(-c^2*x^2+1)^(1/2)))+2*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c^
2/d^2/(c^2*x^2-1)*g*arcsin(c*x)*ln(1-I*(I*c*x+(-c^2*x^2+1)^(1/2)))+I*b^2*(-d*(c^2*x^2-1))^(1/2)/c/d^2/(c^2*x^2
-1)*arcsin(c*x)^2*(-c^2*x^2+1)^(1/2)*f+I*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c/d^2/(c^2*x^2-1)*f*pol
ylog(2,-(I*c*x+(-c^2*x^2+1)^(1/2))^2)+2*I*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*g*
dilog(1+I*(I*c*x+(-c^2*x^2+1)^(1/2)))-2*a*b*(-d*(c^2*x^2-1))^(1/2)/d^2/(c^2*x^2-1)*arcsin(c*x)*x*f-2*a*b*(-d*(
c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*arcsin(c*x)*g-2*a*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)*ln(I*c*x+(
-c^2*x^2+1)^(1/2)+I)/c/d^2/(c^2*x^2-1)*f+2*a*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)*ln(I*c*x+(-c^2*x^2+1)
^(1/2)+I)/c^2/d^2/(c^2*x^2-1)*g-2*a*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c/d^2/(c^2*x^2-1)*ln(I*c*x+(-c
^2*x^2+1)^(1/2)-I)*f-2*a*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*ln(I*c*x+(-c^2*x^2+1)
^(1/2)-I)*g

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

2*a*b*f*x*arcsin(c*x)/(sqrt(-c^2*d*x^2 + d)*d) + a^2*f*x/(sqrt(-c^2*d*x^2 + d)*d) - sqrt(d)*integrate((2*a*b*g
*x*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + (b^2*g*x + b^2*f)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))^2
)/((c^2*d^2*x^2 - d^2)*sqrt(c*x + 1)*sqrt(-c*x + 1)), x) - a*b*f*log(x^2 - 1/c^2)/(c*d^(3/2)) + a^2*g/(sqrt(-c
^2*d*x^2 + d)*c^2*d)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(a^2*g*x + a^2*f + (b^2*g*x + b^2*f)*arcsin(c*x)^2 + 2*(a*b*g*x + a*b*f)*arcsin(
c*x))/(c^4*d^2*x^4 - 2*c^2*d^2*x^2 + d^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2} \left (f + g x\right )}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*asin(c*x))**2/(-c**2*d*x**2+d)**(3/2),x)

[Out]

Integral((a + b*asin(c*x))**2*(f + g*x)/(-d*(c*x - 1)*(c*x + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(t_

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\left (f+g\,x\right )\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{{\left (d-c^2\,d\,x^2\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((f + g*x)*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(3/2),x)

[Out]

int(((f + g*x)*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(3/2), x)

________________________________________________________________________________________