3.2.84 \(\int e^{3 i \text {ArcTan}(a+b x)} \, dx\) [184]

Optimal. Leaf size=94 \[ -\frac {3 i \sqrt {1-i a-i b x} \sqrt {1+i a+i b x}}{b}-\frac {2 i (1+i a+i b x)^{3/2}}{b \sqrt {1-i a-i b x}}-\frac {3 \sinh ^{-1}(a+b x)}{b} \]

[Out]

-3*arcsinh(b*x+a)/b-2*I*(1+I*a+I*b*x)^(3/2)/b/(1-I*a-I*b*x)^(1/2)-3*I*(1-I*a-I*b*x)^(1/2)*(1+I*a+I*b*x)^(1/2)/
b

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {5201, 49, 52, 55, 633, 221} \begin {gather*} -\frac {2 i (i a+i b x+1)^{3/2}}{b \sqrt {-i a-i b x+1}}-\frac {3 i \sqrt {-i a-i b x+1} \sqrt {i a+i b x+1}}{b}-\frac {3 \sinh ^{-1}(a+b x)}{b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^((3*I)*ArcTan[a + b*x]),x]

[Out]

((-3*I)*Sqrt[1 - I*a - I*b*x]*Sqrt[1 + I*a + I*b*x])/b - ((2*I)*(1 + I*a + I*b*x)^(3/2))/(b*Sqrt[1 - I*a - I*b
*x]) - (3*ArcSinh[a + b*x])/b

Rule 49

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 55

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Int[1/Sqrt[a*c - b*(a - c)*x - b^2*x^2]
, x] /; FreeQ[{a, b, c, d}, x] && EqQ[b + d, 0] && GtQ[a + c, 0]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 633

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[1/(2*c*(-4*(c/(b^2 - 4*a*c)))^p), Subst[Int[Si
mp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]

Rule 5201

Int[E^(ArcTan[(c_.)*((a_) + (b_.)*(x_))]*(n_.)), x_Symbol] :> Int[(1 - I*a*c - I*b*c*x)^(I*(n/2))/(1 + I*a*c +
 I*b*c*x)^(I*(n/2)), x] /; FreeQ[{a, b, c, n}, x]

Rubi steps

\begin {align*} \int e^{3 i \tan ^{-1}(a+b x)} \, dx &=\int \frac {(1+i a+i b x)^{3/2}}{(1-i a-i b x)^{3/2}} \, dx\\ &=-\frac {2 i (1+i a+i b x)^{3/2}}{b \sqrt {1-i a-i b x}}-3 \int \frac {\sqrt {1+i a+i b x}}{\sqrt {1-i a-i b x}} \, dx\\ &=-\frac {3 i \sqrt {1-i a-i b x} \sqrt {1+i a+i b x}}{b}-\frac {2 i (1+i a+i b x)^{3/2}}{b \sqrt {1-i a-i b x}}-3 \int \frac {1}{\sqrt {1-i a-i b x} \sqrt {1+i a+i b x}} \, dx\\ &=-\frac {3 i \sqrt {1-i a-i b x} \sqrt {1+i a+i b x}}{b}-\frac {2 i (1+i a+i b x)^{3/2}}{b \sqrt {1-i a-i b x}}-3 \int \frac {1}{\sqrt {(1-i a) (1+i a)+2 a b x+b^2 x^2}} \, dx\\ &=-\frac {3 i \sqrt {1-i a-i b x} \sqrt {1+i a+i b x}}{b}-\frac {2 i (1+i a+i b x)^{3/2}}{b \sqrt {1-i a-i b x}}-\frac {3 \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{4 b^2}}} \, dx,x,2 a b+2 b^2 x\right )}{2 b^2}\\ &=-\frac {3 i \sqrt {1-i a-i b x} \sqrt {1+i a+i b x}}{b}-\frac {2 i (1+i a+i b x)^{3/2}}{b \sqrt {1-i a-i b x}}-\frac {3 \sinh ^{-1}(a+b x)}{b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.04, size = 45, normalized size = 0.48 \begin {gather*} \frac {\sqrt {1+(a+b x)^2} \left (-i+\frac {4}{i+a+b x}\right )}{b}-\frac {3 \sinh ^{-1}(a+b x)}{b} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[E^((3*I)*ArcTan[a + b*x]),x]

[Out]

(Sqrt[1 + (a + b*x)^2]*(-I + 4/(I + a + b*x)))/b - (3*ArcSinh[a + b*x])/b

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 616 vs. \(2 (76 ) = 152\).
time = 0.14, size = 617, normalized size = 6.56

method result size
risch \(-\frac {i \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}{b}-\frac {3 \ln \left (\frac {b^{2} x +a b}{\sqrt {b^{2}}}+\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}\right )}{\sqrt {b^{2}}}+\frac {4 \sqrt {\left (x +\frac {i+a}{b}\right )^{2} b^{2}-2 i b \left (x +\frac {i+a}{b}\right )}}{b^{2} \left (x +\frac {i+a}{b}\right )}\) \(120\)
default \(-i b^{3} \left (\frac {x^{2}}{b^{2} \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {3 a \left (-\frac {x}{b^{2} \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {a \left (-\frac {1}{b^{2} \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {2 a \left (2 b^{2} x +2 a b \right )}{b \left (4 b^{2} \left (a^{2}+1\right )-4 a^{2} b^{2}\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}\right )}{b}+\frac {\ln \left (\frac {b^{2} x +a b}{\sqrt {b^{2}}}+\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}\right )}{b^{2} \sqrt {b^{2}}}\right )}{b}-\frac {2 \left (a^{2}+1\right ) \left (-\frac {1}{b^{2} \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {2 a \left (2 b^{2} x +2 a b \right )}{b \left (4 b^{2} \left (a^{2}+1\right )-4 a^{2} b^{2}\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}\right )}{b^{2}}\right )-3 \left (i a +1\right ) b^{2} \left (-\frac {x}{b^{2} \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {a \left (-\frac {1}{b^{2} \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {2 a \left (2 b^{2} x +2 a b \right )}{b \left (4 b^{2} \left (a^{2}+1\right )-4 a^{2} b^{2}\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}\right )}{b}+\frac {\ln \left (\frac {b^{2} x +a b}{\sqrt {b^{2}}}+\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}\right )}{b^{2} \sqrt {b^{2}}}\right )+3 i \left (i a +1\right )^{2} b \left (-\frac {1}{b^{2} \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {2 a \left (2 b^{2} x +2 a b \right )}{b \left (4 b^{2} \left (a^{2}+1\right )-4 a^{2} b^{2}\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}\right )+\frac {2 \left (i a +1\right )^{3} \left (2 b^{2} x +2 a b \right )}{\left (4 b^{2} \left (a^{2}+1\right )-4 a^{2} b^{2}\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}\) \(617\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-I*b^3*(x^2/b^2/(b^2*x^2+2*a*b*x+a^2+1)^(1/2)-3*a/b*(-x/b^2/(b^2*x^2+2*a*b*x+a^2+1)^(1/2)-a/b*(-1/b^2/(b^2*x^2
+2*a*b*x+a^2+1)^(1/2)-2*a/b*(2*b^2*x+2*a*b)/(4*b^2*(a^2+1)-4*a^2*b^2)/(b^2*x^2+2*a*b*x+a^2+1)^(1/2))+1/b^2*ln(
(b^2*x+a*b)/(b^2)^(1/2)+(b^2*x^2+2*a*b*x+a^2+1)^(1/2))/(b^2)^(1/2))-2*(a^2+1)/b^2*(-1/b^2/(b^2*x^2+2*a*b*x+a^2
+1)^(1/2)-2*a/b*(2*b^2*x+2*a*b)/(4*b^2*(a^2+1)-4*a^2*b^2)/(b^2*x^2+2*a*b*x+a^2+1)^(1/2)))-3*(1+I*a)*b^2*(-x/b^
2/(b^2*x^2+2*a*b*x+a^2+1)^(1/2)-a/b*(-1/b^2/(b^2*x^2+2*a*b*x+a^2+1)^(1/2)-2*a/b*(2*b^2*x+2*a*b)/(4*b^2*(a^2+1)
-4*a^2*b^2)/(b^2*x^2+2*a*b*x+a^2+1)^(1/2))+1/b^2*ln((b^2*x+a*b)/(b^2)^(1/2)+(b^2*x^2+2*a*b*x+a^2+1)^(1/2))/(b^
2)^(1/2))+3*I*(1+I*a)^2*b*(-1/b^2/(b^2*x^2+2*a*b*x+a^2+1)^(1/2)-2*a/b*(2*b^2*x+2*a*b)/(4*b^2*(a^2+1)-4*a^2*b^2
)/(b^2*x^2+2*a*b*x+a^2+1)^(1/2))+2*(1+I*a)^3*(2*b^2*x+2*a*b)/(4*b^2*(a^2+1)-4*a^2*b^2)/(b^2*x^2+2*a*b*x+a^2+1)
^(1/2)

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 736 vs. \(2 (66) = 132\).
time = 0.29, size = 736, normalized size = 7.83 \begin {gather*} -\frac {6 i \, a^{3} b^{2} x}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} + \frac {5 i \, {\left (a^{2} + 1\right )} a b^{2} x}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} - \frac {i \, {\left (a^{2} + 1\right )} a^{2} b}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} + \frac {6 \, {\left (i \, a b^{2} + b^{2}\right )} a^{2} x}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} - \frac {3 \, {\left (i \, a^{2} b + 2 \, a b - i \, b\right )} a b x}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} + \frac {{\left (i \, a^{3} + 3 \, a^{2} - 3 i \, a - 1\right )} b^{2} x}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} - \frac {i \, b x^{2}}{\sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} - \frac {3 \, {\left (i \, a^{2} b + 2 \, a b - i \, b\right )} a^{2}}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} - \frac {{\left (-i \, a^{3} - 3 \, a^{2} + 3 i \, a + 1\right )} a b}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} - \frac {3 \, {\left (i \, a b^{2} + b^{2}\right )} {\left (a^{2} + 1\right )} x}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} + \frac {3 i \, a \operatorname {arsinh}\left (\frac {2 \, {\left (b^{2} x + a b\right )}}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}}}\right )}{b} + \frac {3 \, {\left (i \, a b^{2} + b^{2}\right )} {\left (a^{2} + 1\right )} a}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} b} - \frac {2 \, {\left (i \, a^{2} + i\right )}}{\sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} b} - \frac {3 \, {\left (i \, a b^{2} + b^{2}\right )} \operatorname {arsinh}\left (\frac {2 \, {\left (b^{2} x + a b\right )}}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}}}\right )}{b^{3}} + \frac {3 \, {\left (i \, a^{2} b + 2 \, a b - i \, b\right )}}{\sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} b^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2),x, algorithm="maxima")

[Out]

-6*I*a^3*b^2*x/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) + 5*I*(a^2 + 1)*a*b^2*x/((a^2*b^2
 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) - I*(a^2 + 1)*a^2*b/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x
^2 + 2*a*b*x + a^2 + 1)) + 6*(I*a*b^2 + b^2)*a^2*x/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1
)) - 3*(I*a^2*b + 2*a*b - I*b)*a*b*x/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) + (I*a^3 +
3*a^2 - 3*I*a - 1)*b^2*x/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) - I*b*x^2/sqrt(b^2*x^2
+ 2*a*b*x + a^2 + 1) - 3*(I*a^2*b + 2*a*b - I*b)*a^2/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 +
 1)) - (-I*a^3 - 3*a^2 + 3*I*a + 1)*a*b/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) - 3*(I*a
*b^2 + b^2)*(a^2 + 1)*x/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) + 3*I*a*arcsinh(2*(b^2*x
 + a*b)/sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2))/b + 3*(I*a*b^2 + b^2)*(a^2 + 1)*a/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(
b^2*x^2 + 2*a*b*x + a^2 + 1)*b) - 2*(I*a^2 + I)/(sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)*b) - 3*(I*a*b^2 + b^2)*arcs
inh(2*(b^2*x + a*b)/sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2))/b^3 + 3*(I*a^2*b + 2*a*b - I*b)/(sqrt(b^2*x^2 + 2*a*b*
x + a^2 + 1)*b^2)

________________________________________________________________________________________

Fricas [A]
time = 2.49, size = 99, normalized size = 1.05 \begin {gather*} \frac {{\left (-i \, a + 8\right )} b x - i \, a^{2} + 6 \, {\left (b x + a + i\right )} \log \left (-b x - a + \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}\right ) - 2 \, \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} {\left (i \, b x + i \, a - 5\right )} + 9 \, a + 8 i}{2 \, {\left (b^{2} x + {\left (a + i\right )} b\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2),x, algorithm="fricas")

[Out]

1/2*((-I*a + 8)*b*x - I*a^2 + 6*(b*x + a + I)*log(-b*x - a + sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) - 2*sqrt(b^2*x
^2 + 2*a*b*x + a^2 + 1)*(I*b*x + I*a - 5) + 9*a + 8*I)/(b^2*x + (a + I)*b)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - i \left (\int \frac {i}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\, dx + \int \left (- \frac {3 a}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\right )\, dx + \int \frac {a^{3}}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\, dx + \int \left (- \frac {3 i a^{2}}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\right )\, dx + \int \left (- \frac {3 b x}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\right )\, dx + \int \frac {b^{3} x^{3}}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\, dx + \int \left (- \frac {3 i b^{2} x^{2}}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\right )\, dx + \int \frac {3 a b^{2} x^{2}}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\, dx + \int \frac {3 a^{2} b x}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\, dx + \int \left (- \frac {6 i a b x}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\right )\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+I*(b*x+a))**3/(1+(b*x+a)**2)**(3/2),x)

[Out]

-I*(Integral(I/(a**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**
2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(-3*a/(a**2*
sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2*sqrt(a**2 + 2*
a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(a**3/(a**2*sqrt(a**2 + 2*a*b*x +
 b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1
) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(-3*I*a**2/(a**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)
+ 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + sqrt(a**2 +
2*a*b*x + b**2*x**2 + 1)), x) + Integral(-3*b*x/(a**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2
 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2
 + 1)), x) + Integral(b**3*x**3/(a**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**
2*x**2 + 1) + b**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Int
egral(-3*I*b**2*x**2/(a**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)
 + b**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(3*a*b
**2*x**2/(a**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2
*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(3*a**2*b*x/(a**2*
sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2*sqrt(a**2 + 2*
a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(-6*I*a*b*x/(a**2*sqrt(a**2 + 2*a
*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x*
*2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x))

________________________________________________________________________________________

Giac [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 180 vs. \(2 (66) = 132\).
time = 0.46, size = 180, normalized size = 1.91 \begin {gather*} \frac {\log \left (3 \, {\left (x {\left | b \right |} - \sqrt {{\left (b x + a\right )}^{2} + 1}\right )}^{2} a b + a^{3} b + {\left (x {\left | b \right |} - \sqrt {{\left (b x + a\right )}^{2} + 1}\right )}^{3} {\left | b \right |} + 3 \, {\left (x {\left | b \right |} - \sqrt {{\left (b x + a\right )}^{2} + 1}\right )} a^{2} {\left | b \right |} + 2 i \, {\left (x {\left | b \right |} - \sqrt {{\left (b x + a\right )}^{2} + 1}\right )}^{2} b + 2 i \, a^{2} b + 4 \, {\left (i \, x {\left | b \right |} - i \, \sqrt {{\left (b x + a\right )}^{2} + 1}\right )} a {\left | b \right |} - a b - {\left (x {\left | b \right |} - \sqrt {{\left (b x + a\right )}^{2} + 1}\right )} {\left | b \right |}\right )}{{\left | b \right |}} - \frac {i \, \sqrt {{\left (b x + a\right )}^{2} + 1}}{b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2),x, algorithm="giac")

[Out]

log(3*(x*abs(b) - sqrt((b*x + a)^2 + 1))^2*a*b + a^3*b + (x*abs(b) - sqrt((b*x + a)^2 + 1))^3*abs(b) + 3*(x*ab
s(b) - sqrt((b*x + a)^2 + 1))*a^2*abs(b) + 2*I*(x*abs(b) - sqrt((b*x + a)^2 + 1))^2*b + 2*I*a^2*b + 4*(I*x*abs
(b) - I*sqrt((b*x + a)^2 + 1))*a*abs(b) - a*b - (x*abs(b) - sqrt((b*x + a)^2 + 1))*abs(b))/abs(b) - I*sqrt((b*
x + a)^2 + 1)/b

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (1+a\,1{}\mathrm {i}+b\,x\,1{}\mathrm {i}\right )}^3}{{\left ({\left (a+b\,x\right )}^2+1\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*1i + b*x*1i + 1)^3/((a + b*x)^2 + 1)^(3/2),x)

[Out]

int((a*1i + b*x*1i + 1)^3/((a + b*x)^2 + 1)^(3/2), x)

________________________________________________________________________________________