3.4.24 \(\int \frac {e^{-i \text {ArcTan}(a x)}}{(1+a^2 x^2)^{3/2}} \, dx\) [324]

Optimal. Leaf size=29 \[ -\frac {1}{2 a (i-a x)}+\frac {\text {ArcTan}(a x)}{2 a} \]

[Out]

-1/2/a/(I-a*x)+1/2*arctan(a*x)/a

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 29, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {5181, 46, 209} \begin {gather*} \frac {\text {ArcTan}(a x)}{2 a}-\frac {1}{2 a (-a x+i)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(E^(I*ArcTan[a*x])*(1 + a^2*x^2)^(3/2)),x]

[Out]

-1/2*1/(a*(I - a*x)) + ArcTan[a*x]/(2*a)

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 5181

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(1 - I*a*x)^(p + I*(n
/2))*(1 + I*a*x)^(p - I*(n/2)), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[d, a^2*c] && (IntegerQ[p] || GtQ[c,
 0])

Rubi steps

\begin {align*} \int \frac {e^{-i \tan ^{-1}(a x)}}{\left (1+a^2 x^2\right )^{3/2}} \, dx &=\int \frac {1}{(1-i a x) (1+i a x)^2} \, dx\\ &=\int \left (-\frac {1}{2 (-i+a x)^2}+\frac {1}{2 \left (1+a^2 x^2\right )}\right ) \, dx\\ &=-\frac {1}{2 a (i-a x)}+\frac {1}{2} \int \frac {1}{1+a^2 x^2} \, dx\\ &=-\frac {1}{2 a (i-a x)}+\frac {\tan ^{-1}(a x)}{2 a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 21, normalized size = 0.72 \begin {gather*} \frac {\frac {1}{-i+a x}+\text {ArcTan}(a x)}{2 a} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(E^(I*ArcTan[a*x])*(1 + a^2*x^2)^(3/2)),x]

[Out]

((-I + a*x)^(-1) + ArcTan[a*x])/(2*a)

________________________________________________________________________________________

Maple [A]
time = 0.08, size = 43, normalized size = 1.48

method result size
risch \(\frac {1}{2 a \left (a x -i\right )}+\frac {\arctan \left (a x \right )}{2 a}\) \(24\)
default \(-\frac {i \ln \left (-a x +i\right )}{4 a}-\frac {1}{2 a \left (-a x +i\right )}+\frac {i \ln \left (a x +i\right )}{4 a}\) \(43\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1+I*a*x)/(a^2*x^2+1),x,method=_RETURNVERBOSE)

[Out]

-1/4*I/a*ln(I-a*x)-1/2/a/(I-a*x)+1/4*I/a*ln(I+a*x)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)/(a^2*x^2+1),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: expt: undefined: 0 to a negative e
xponent.

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 49 vs. \(2 (22) = 44\).
time = 3.16, size = 49, normalized size = 1.69 \begin {gather*} \frac {{\left (i \, a x + 1\right )} \log \left (\frac {a x + i}{a}\right ) + {\left (-i \, a x - 1\right )} \log \left (\frac {a x - i}{a}\right ) + 2}{4 \, {\left (a^{2} x - i \, a\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)/(a^2*x^2+1),x, algorithm="fricas")

[Out]

1/4*((I*a*x + 1)*log((a*x + I)/a) + (-I*a*x - 1)*log((a*x - I)/a) + 2)/(a^2*x - I*a)

________________________________________________________________________________________

Sympy [A]
time = 0.11, size = 34, normalized size = 1.17 \begin {gather*} - i \left (\frac {i}{2 a^{2} x - 2 i a} + \frac {\frac {\log {\left (x - \frac {i}{a} \right )}}{4} - \frac {\log {\left (x + \frac {i}{a} \right )}}{4}}{a}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)/(a**2*x**2+1),x)

[Out]

-I*(I/(2*a**2*x - 2*I*a) + (log(x - I/a)/4 - log(x + I/a)/4)/a)

________________________________________________________________________________________

Giac [A]
time = 0.41, size = 36, normalized size = 1.24 \begin {gather*} -\frac {i \, \log \left (a x - i\right )}{4 \, a} + \frac {i \, \log \left (i \, a x - 1\right )}{4 \, a} + \frac {1}{2 \, {\left (a x - i\right )} a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)/(a^2*x^2+1),x, algorithm="giac")

[Out]

-1/4*I*log(a*x - I)/a + 1/4*I*log(I*a*x - 1)/a + 1/2/((a*x - I)*a)

________________________________________________________________________________________

Mupad [B]
time = 0.48, size = 25, normalized size = 0.86 \begin {gather*} \frac {\mathrm {atan}\left (a\,x\right )}{2\,a}-\frac {1}{2\,\left (-a^2\,x+a\,1{}\mathrm {i}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a^2*x^2 + 1)*(a*x*1i + 1)),x)

[Out]

atan(a*x)/(2*a) - 1/(2*(a*1i - a^2*x))

________________________________________________________________________________________