3.4.40 \(\int \frac {e^{n \text {ArcTan}(a x)} x^3}{c+a^2 c x^2} \, dx\) [340]

Optimal. Leaf size=131 \[ \frac {e^{n \text {ArcTan}(a x)} \left (2 i+n-i n^2\right )}{2 a^4 c n}-\frac {e^{n \text {ArcTan}(a x)} n x}{2 a^3 c}+\frac {e^{n \text {ArcTan}(a x)} x^2}{2 a^2 c}+\frac {i e^{n \text {ArcTan}(a x)} \left (-2+n^2\right ) \, _2F_1\left (1,-\frac {i n}{2};1-\frac {i n}{2};-e^{2 i \text {ArcTan}(a x)}\right )}{a^4 c n} \]

[Out]

1/2*exp(n*arctan(a*x))*(2*I+n-I*n^2)/a^4/c/n-1/2*exp(n*arctan(a*x))*n*x/a^3/c+1/2*exp(n*arctan(a*x))*x^2/a^2/c
+I*exp(n*arctan(a*x))*(n^2-2)*hypergeom([1, -1/2*I*n],[1-1/2*I*n],-(1+I*a*x)^2/(a^2*x^2+1))/a^4/c/n

________________________________________________________________________________________

Rubi [A]
time = 0.17, antiderivative size = 206, normalized size of antiderivative = 1.57, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {5190, 102, 148, 71} \begin {gather*} \frac {2^{-1-\frac {i n}{2}} \left (2-n^2\right ) (1-i a x)^{1+\frac {i n}{2}} \, _2F_1\left (\frac {i n}{2}+1,\frac {i n}{2}+1;\frac {i n}{2}+2;\frac {1}{2} (1-i a x)\right )}{a^4 c (2+i n)}+\frac {i (1+i a x)^{-\frac {i n}{2}} \left (i a n^2 x-n^2-i n+2\right ) (1-i a x)^{\frac {i n}{2}}}{2 a^4 c n}+\frac {x^2 (1+i a x)^{-\frac {i n}{2}} (1-i a x)^{\frac {i n}{2}}}{2 a^2 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^(n*ArcTan[a*x])*x^3)/(c + a^2*c*x^2),x]

[Out]

(x^2*(1 - I*a*x)^((I/2)*n))/(2*a^2*c*(1 + I*a*x)^((I/2)*n)) + ((I/2)*(1 - I*a*x)^((I/2)*n)*(2 - I*n - n^2 + I*
a*n^2*x))/(a^4*c*n*(1 + I*a*x)^((I/2)*n)) + (2^(-1 - (I/2)*n)*(2 - n^2)*(1 - I*a*x)^(1 + (I/2)*n)*Hypergeometr
ic2F1[1 + (I/2)*n, 1 + (I/2)*n, 2 + (I/2)*n, (1 - I*a*x)/2])/(a^4*c*(2 + I*n))

Rule 71

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c
 - a*d))^n))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-d/(b*c - a*d), 0]))

Rule 102

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 1))), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegerQ[m]

Rule 148

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol] :
> Simp[(b^2*d*e*g - a^2*d*f*h*m - a*b*(d*(f*g + e*h) - c*f*h*(m + 1)) + b*f*h*(b*c - a*d)*(m + 1)*x)*(a + b*x)
^(m + 1)*((c + d*x)^(n + 1)/(b^2*d*(b*c - a*d)*(m + 1))), x] + Dist[(a*d*f*h*m + b*(d*(f*g + e*h) - c*f*h*(m +
 2)))/(b^2*d), Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && EqQ[m
+ n + 2, 0] && NeQ[m, -1] && (SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rule 5190

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 - I
*a*x)^(p + I*(n/2))*(1 + I*a*x)^(p - I*(n/2)), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[d, a^2*c] && (Int
egerQ[p] || GtQ[c, 0])

Rubi steps

\begin {align*} \int \frac {e^{n \tan ^{-1}(a x)} x^3}{c+a^2 c x^2} \, dx &=\frac {\int x^3 (1-i a x)^{-1+\frac {i n}{2}} (1+i a x)^{-1-\frac {i n}{2}} \, dx}{c}\\ &=\frac {x^2 (1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}}}{2 a^2 c}+\frac {\int x (1-i a x)^{-1+\frac {i n}{2}} (1+i a x)^{-1-\frac {i n}{2}} (-2-a n x) \, dx}{2 a^2 c}\\ &=\frac {x^2 (1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}}}{2 a^2 c}+\frac {i (1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}} \left (2-i n-n^2+i a n^2 x\right )}{2 a^4 c n}-\frac {\left (i \left (2-n^2\right )\right ) \int (1-i a x)^{\frac {i n}{2}} (1+i a x)^{-1-\frac {i n}{2}} \, dx}{2 a^3 c}\\ &=\frac {x^2 (1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}}}{2 a^2 c}+\frac {i (1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}} \left (2-i n-n^2+i a n^2 x\right )}{2 a^4 c n}+\frac {2^{-1-\frac {i n}{2}} \left (2-n^2\right ) (1-i a x)^{1+\frac {i n}{2}} \, _2F_1\left (1+\frac {i n}{2},1+\frac {i n}{2};2+\frac {i n}{2};\frac {1}{2} (1-i a x)\right )}{a^4 c (2+i n)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.09, size = 141, normalized size = 1.08 \begin {gather*} \frac {(1-i a x)^{\frac {i n}{2}} \left (\frac {(1+i a x)^{-\frac {i n}{2}} \left (2 i+n+a^2 n x^2-n^2 (i+a x)\right )}{n}+\frac {2^{-\frac {i n}{2}} \left (-2+n^2\right ) (i+a x) \, _2F_1\left (1+\frac {i n}{2},1+\frac {i n}{2};2+\frac {i n}{2};\frac {1}{2} (1-i a x)\right )}{-2 i+n}\right )}{2 a^4 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^(n*ArcTan[a*x])*x^3)/(c + a^2*c*x^2),x]

[Out]

((1 - I*a*x)^((I/2)*n)*((2*I + n + a^2*n*x^2 - n^2*(I + a*x))/(n*(1 + I*a*x)^((I/2)*n)) + ((-2 + n^2)*(I + a*x
)*Hypergeometric2F1[1 + (I/2)*n, 1 + (I/2)*n, 2 + (I/2)*n, (1 - I*a*x)/2])/(2^((I/2)*n)*(-2*I + n))))/(2*a^4*c
)

________________________________________________________________________________________

Maple [F]
time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {{\mathrm e}^{n \arctan \left (a x \right )} x^{3}}{a^{2} c \,x^{2}+c}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arctan(a*x))*x^3/(a^2*c*x^2+c),x)

[Out]

int(exp(n*arctan(a*x))*x^3/(a^2*c*x^2+c),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))*x^3/(a^2*c*x^2+c),x, algorithm="maxima")

[Out]

integrate(x^3*e^(n*arctan(a*x))/(a^2*c*x^2 + c), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))*x^3/(a^2*c*x^2+c),x, algorithm="fricas")

[Out]

integral(x^3*e^(n*arctan(a*x))/(a^2*c*x^2 + c), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {x^{3} e^{n \operatorname {atan}{\left (a x \right )}}}{a^{2} x^{2} + 1}\, dx}{c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*atan(a*x))*x**3/(a**2*c*x**2+c),x)

[Out]

Integral(x**3*exp(n*atan(a*x))/(a**2*x**2 + 1), x)/c

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))*x^3/(a^2*c*x^2+c),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^3\,{\mathrm {e}}^{n\,\mathrm {atan}\left (a\,x\right )}}{c\,a^2\,x^2+c} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*exp(n*atan(a*x)))/(c + a^2*c*x^2),x)

[Out]

int((x^3*exp(n*atan(a*x)))/(c + a^2*c*x^2), x)

________________________________________________________________________________________