3.4.58 \(\int \frac {e^{n \text {ArcTan}(a x)}}{x^2 \sqrt {c+a^2 c x^2}} \, dx\) [358]

Optimal. Leaf size=196 \[ -\frac {(1-i a x)^{\frac {1}{2} (1+i n)} (1+i a x)^{\frac {1}{2} (1-i n)} \sqrt {1+a^2 x^2}}{x \sqrt {c+a^2 c x^2}}-\frac {2 a n (1-i a x)^{\frac {1}{2} (1+i n)} (1+i a x)^{\frac {1}{2} (-1-i n)} \sqrt {1+a^2 x^2} \, _2F_1\left (1,\frac {1}{2} (1+i n);\frac {1}{2} (3+i n);\frac {1-i a x}{1+i a x}\right )}{(1+i n) \sqrt {c+a^2 c x^2}} \]

[Out]

-(1-I*a*x)^(1/2+1/2*I*n)*(1+I*a*x)^(1/2-1/2*I*n)*(a^2*x^2+1)^(1/2)/x/(a^2*c*x^2+c)^(1/2)-2*a*n*(1-I*a*x)^(1/2+
1/2*I*n)*(1+I*a*x)^(-1/2-1/2*I*n)*hypergeom([1, 1/2+1/2*I*n],[3/2+1/2*I*n],(1-I*a*x)/(1+I*a*x))*(a^2*x^2+1)^(1
/2)/(1+I*n)/(a^2*c*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 196, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {5193, 5190, 98, 133} \begin {gather*} -\frac {2 a n \sqrt {a^2 x^2+1} (1-i a x)^{\frac {1}{2} (1+i n)} (1+i a x)^{\frac {1}{2} (-1-i n)} \, _2F_1\left (1,\frac {1}{2} (i n+1);\frac {1}{2} (i n+3);\frac {1-i a x}{i a x+1}\right )}{(1+i n) \sqrt {a^2 c x^2+c}}-\frac {\sqrt {a^2 x^2+1} (1-i a x)^{\frac {1}{2} (1+i n)} (1+i a x)^{\frac {1}{2} (1-i n)}}{x \sqrt {a^2 c x^2+c}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^(n*ArcTan[a*x])/(x^2*Sqrt[c + a^2*c*x^2]),x]

[Out]

-(((1 - I*a*x)^((1 + I*n)/2)*(1 + I*a*x)^((1 - I*n)/2)*Sqrt[1 + a^2*x^2])/(x*Sqrt[c + a^2*c*x^2])) - (2*a*n*(1
 - I*a*x)^((1 + I*n)/2)*(1 + I*a*x)^((-1 - I*n)/2)*Sqrt[1 + a^2*x^2]*Hypergeometric2F1[1, (1 + I*n)/2, (3 + I*
n)/2, (1 - I*a*x)/(1 + I*a*x)])/((1 + I*n)*Sqrt[c + a^2*c*x^2])

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Dist[(a*d*f*(m + 1)
 + b*c*f*(n + 1) + b*d*e*(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*
x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[Simplify[m + n + p + 3], 0] && (LtQ[m, -1] || Sum
SimplerQ[m, 1])

Rule 133

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[(b*c - a
*d)^n*((a + b*x)^(m + 1)/((m + 1)*(b*e - a*f)^(n + 1)*(e + f*x)^(m + 1)))*Hypergeometric2F1[m + 1, -n, m + 2,
(-(d*e - c*f))*((a + b*x)/((b*c - a*d)*(e + f*x)))], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[m + n + p
 + 2, 0] && ILtQ[n, 0] && (SumSimplerQ[m, 1] ||  !SumSimplerQ[p, 1]) &&  !ILtQ[m, 0]

Rule 5190

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 - I
*a*x)^(p + I*(n/2))*(1 + I*a*x)^(p - I*(n/2)), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[d, a^2*c] && (Int
egerQ[p] || GtQ[c, 0])

Rule 5193

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[c^IntPart[p]*((c + d
*x^2)^FracPart[p]/(1 + a^2*x^2)^FracPart[p]), Int[x^m*(1 + a^2*x^2)^p*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c
, d, m, n, p}, x] && EqQ[d, a^2*c] &&  !(IntegerQ[p] || GtQ[c, 0])

Rubi steps

\begin {align*} \int \frac {e^{n \tan ^{-1}(a x)}}{x^2 \sqrt {c+a^2 c x^2}} \, dx &=\frac {\sqrt {1+a^2 x^2} \int \frac {e^{n \tan ^{-1}(a x)}}{x^2 \sqrt {1+a^2 x^2}} \, dx}{\sqrt {c+a^2 c x^2}}\\ &=\frac {\sqrt {1+a^2 x^2} \int \frac {(1-i a x)^{-\frac {1}{2}+\frac {i n}{2}} (1+i a x)^{-\frac {1}{2}-\frac {i n}{2}}}{x^2} \, dx}{\sqrt {c+a^2 c x^2}}\\ &=-\frac {(1-i a x)^{\frac {1}{2} (1+i n)} (1+i a x)^{\frac {1}{2} (1-i n)} \sqrt {1+a^2 x^2}}{x \sqrt {c+a^2 c x^2}}+\frac {\left (a n \sqrt {1+a^2 x^2}\right ) \int \frac {(1-i a x)^{-\frac {1}{2}+\frac {i n}{2}} (1+i a x)^{-\frac {1}{2}-\frac {i n}{2}}}{x} \, dx}{\sqrt {c+a^2 c x^2}}\\ &=-\frac {(1-i a x)^{\frac {1}{2} (1+i n)} (1+i a x)^{\frac {1}{2} (1-i n)} \sqrt {1+a^2 x^2}}{x \sqrt {c+a^2 c x^2}}-\frac {2 a n (1-i a x)^{\frac {1}{2} (1+i n)} (1+i a x)^{\frac {1}{2} (-1-i n)} \sqrt {1+a^2 x^2} \, _2F_1\left (1,\frac {1}{2} (1+i n);\frac {1}{2} (3+i n);\frac {1-i a x}{1+i a x}\right )}{(1+i n) \sqrt {c+a^2 c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 142, normalized size = 0.72 \begin {gather*} \frac {(1-i a x)^{\frac {1}{2}+\frac {i n}{2}} (1+i a x)^{-\frac {1}{2}-\frac {i n}{2}} \sqrt {1+a^2 x^2} \left (-((-i+n) (-i+a x))+2 a n x \, _2F_1\left (1,\frac {1}{2}+\frac {i n}{2};\frac {3}{2}+\frac {i n}{2};\frac {i+a x}{i-a x}\right )\right )}{(-1-i n) x \sqrt {c+a^2 c x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^(n*ArcTan[a*x])/(x^2*Sqrt[c + a^2*c*x^2]),x]

[Out]

((1 - I*a*x)^(1/2 + (I/2)*n)*(1 + I*a*x)^(-1/2 - (I/2)*n)*Sqrt[1 + a^2*x^2]*(-((-I + n)*(-I + a*x)) + 2*a*n*x*
Hypergeometric2F1[1, 1/2 + (I/2)*n, 3/2 + (I/2)*n, (I + a*x)/(I - a*x)]))/((-1 - I*n)*x*Sqrt[c + a^2*c*x^2])

________________________________________________________________________________________

Maple [F]
time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {{\mathrm e}^{n \arctan \left (a x \right )}}{x^{2} \sqrt {a^{2} c \,x^{2}+c}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arctan(a*x))/x^2/(a^2*c*x^2+c)^(1/2),x)

[Out]

int(exp(n*arctan(a*x))/x^2/(a^2*c*x^2+c)^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))/x^2/(a^2*c*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(e^(n*arctan(a*x))/(sqrt(a^2*c*x^2 + c)*x^2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))/x^2/(a^2*c*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(a^2*c*x^2 + c)*e^(n*arctan(a*x))/(a^2*c*x^4 + c*x^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{n \operatorname {atan}{\left (a x \right )}}}{x^{2} \sqrt {c \left (a^{2} x^{2} + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*atan(a*x))/x**2/(a**2*c*x**2+c)**(1/2),x)

[Out]

Integral(exp(n*atan(a*x))/(x**2*sqrt(c*(a**2*x**2 + 1))), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))/x^2/(a^2*c*x^2+c)^(1/2),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\mathrm {e}}^{n\,\mathrm {atan}\left (a\,x\right )}}{x^2\,\sqrt {c\,a^2\,x^2+c}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*atan(a*x))/(x^2*(c + a^2*c*x^2)^(1/2)),x)

[Out]

int(exp(n*atan(a*x))/(x^2*(c + a^2*c*x^2)^(1/2)), x)

________________________________________________________________________________________