3.4.68 \(\int \frac {e^{n \text {ArcTan}(a x)} x^m}{\sqrt {c+a^2 c x^2}} \, dx\) [368]

Optimal. Leaf size=79 \[ \frac {x^{1+m} \sqrt {1+a^2 x^2} F_1\left (1+m;\frac {1}{2} (1-i n),\frac {1}{2} (1+i n);2+m;i a x,-i a x\right )}{(1+m) \sqrt {c+a^2 c x^2}} \]

[Out]

x^(1+m)*AppellF1(1+m,1/2+1/2*I*n,1/2-1/2*I*n,2+m,-I*a*x,I*a*x)*(a^2*x^2+1)^(1/2)/(1+m)/(a^2*c*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.14, antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {5193, 5190, 138} \begin {gather*} \frac {\sqrt {a^2 x^2+1} x^{m+1} F_1\left (m+1;\frac {1}{2} (1-i n),\frac {1}{2} (i n+1);m+2;i a x,-i a x\right )}{(m+1) \sqrt {a^2 c x^2+c}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^(n*ArcTan[a*x])*x^m)/Sqrt[c + a^2*c*x^2],x]

[Out]

(x^(1 + m)*Sqrt[1 + a^2*x^2]*AppellF1[1 + m, (1 - I*n)/2, (1 + I*n)/2, 2 + m, I*a*x, (-I)*a*x])/((1 + m)*Sqrt[
c + a^2*c*x^2])

Rule 138

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[c^n*e^p*((b*x)^(m +
 1)/(b*(m + 1)))*AppellF1[m + 1, -n, -p, m + 2, (-d)*(x/c), (-f)*(x/e)], x] /; FreeQ[{b, c, d, e, f, m, n, p},
 x] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])

Rule 5190

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 - I
*a*x)^(p + I*(n/2))*(1 + I*a*x)^(p - I*(n/2)), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[d, a^2*c] && (Int
egerQ[p] || GtQ[c, 0])

Rule 5193

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[c^IntPart[p]*((c + d
*x^2)^FracPart[p]/(1 + a^2*x^2)^FracPart[p]), Int[x^m*(1 + a^2*x^2)^p*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c
, d, m, n, p}, x] && EqQ[d, a^2*c] &&  !(IntegerQ[p] || GtQ[c, 0])

Rubi steps

\begin {align*} \int \frac {e^{n \tan ^{-1}(a x)} x^m}{\sqrt {c+a^2 c x^2}} \, dx &=\frac {\sqrt {1+a^2 x^2} \int \frac {e^{n \tan ^{-1}(a x)} x^m}{\sqrt {1+a^2 x^2}} \, dx}{\sqrt {c+a^2 c x^2}}\\ &=\frac {\sqrt {1+a^2 x^2} \int x^m (1-i a x)^{-\frac {1}{2}+\frac {i n}{2}} (1+i a x)^{-\frac {1}{2}-\frac {i n}{2}} \, dx}{\sqrt {c+a^2 c x^2}}\\ &=\frac {x^{1+m} \sqrt {1+a^2 x^2} F_1\left (1+m;\frac {1}{2} (1-i n),\frac {1}{2} (1+i n);2+m;i a x,-i a x\right )}{(1+m) \sqrt {c+a^2 c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]
time = 0.25, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{n \text {ArcTan}(a x)} x^m}{\sqrt {c+a^2 c x^2}} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[(E^(n*ArcTan[a*x])*x^m)/Sqrt[c + a^2*c*x^2],x]

[Out]

Integrate[(E^(n*ArcTan[a*x])*x^m)/Sqrt[c + a^2*c*x^2], x]

________________________________________________________________________________________

Maple [F]
time = 0.03, size = 0, normalized size = 0.00 \[\int \frac {{\mathrm e}^{n \arctan \left (a x \right )} x^{m}}{\sqrt {a^{2} c \,x^{2}+c}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arctan(a*x))*x^m/(a^2*c*x^2+c)^(1/2),x)

[Out]

int(exp(n*arctan(a*x))*x^m/(a^2*c*x^2+c)^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))*x^m/(a^2*c*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^m*e^(n*arctan(a*x))/sqrt(a^2*c*x^2 + c), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))*x^m/(a^2*c*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

integral(x^m*e^(n*arctan(a*x))/sqrt(a^2*c*x^2 + c), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{m} e^{n \operatorname {atan}{\left (a x \right )}}}{\sqrt {c \left (a^{2} x^{2} + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*atan(a*x))*x**m/(a**2*c*x**2+c)**(1/2),x)

[Out]

Integral(x**m*exp(n*atan(a*x))/sqrt(c*(a**2*x**2 + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))*x^m/(a^2*c*x^2+c)^(1/2),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^m\,{\mathrm {e}}^{n\,\mathrm {atan}\left (a\,x\right )}}{\sqrt {c\,a^2\,x^2+c}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^m*exp(n*atan(a*x)))/(c + a^2*c*x^2)^(1/2),x)

[Out]

int((x^m*exp(n*atan(a*x)))/(c + a^2*c*x^2)^(1/2), x)

________________________________________________________________________________________