3.1.57 \(\int \frac {e^{-3 i \text {ArcTan}(a x)}}{x^2} \, dx\) [57]

Optimal. Leaf size=64 \[ -\frac {\sqrt {1+a^2 x^2}}{x}+\frac {4 a \sqrt {1+a^2 x^2}}{i-a x}+3 i a \tanh ^{-1}\left (\sqrt {1+a^2 x^2}\right ) \]

[Out]

3*I*a*arctanh((a^2*x^2+1)^(1/2))-(a^2*x^2+1)^(1/2)/x+4*a*(a^2*x^2+1)^(1/2)/(I-a*x)

________________________________________________________________________________________

Rubi [A]
time = 0.45, antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {5168, 6874, 270, 272, 65, 214, 665} \begin {gather*} \frac {4 a \sqrt {a^2 x^2+1}}{-a x+i}-\frac {\sqrt {a^2 x^2+1}}{x}+3 i a \tanh ^{-1}\left (\sqrt {a^2 x^2+1}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(E^((3*I)*ArcTan[a*x])*x^2),x]

[Out]

-(Sqrt[1 + a^2*x^2]/x) + (4*a*Sqrt[1 + a^2*x^2])/(I - a*x) + (3*I)*a*ArcTanh[Sqrt[1 + a^2*x^2]]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*
c*(m + 1))), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 665

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^m*((a + c*x^2)^(p + 1)/
(2*c*d*(p + 1))), x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p
+ 2, 0]

Rule 5168

Int[E^(ArcTan[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[x^m*((1 - I*a*x)^((I*n + 1)/2)/((1 + I*a*x)^((I*n
 - 1)/2)*Sqrt[1 + a^2*x^2])), x] /; FreeQ[{a, m}, x] && IntegerQ[(I*n - 1)/2]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {align*} \int \frac {e^{-3 i \tan ^{-1}(a x)}}{x^2} \, dx &=\int \frac {(1-i a x)^2}{x^2 (1+i a x) \sqrt {1+a^2 x^2}} \, dx\\ &=\int \left (\frac {1}{x^2 \sqrt {1+a^2 x^2}}-\frac {3 i a}{x \sqrt {1+a^2 x^2}}+\frac {4 i a^2}{(-i+a x) \sqrt {1+a^2 x^2}}\right ) \, dx\\ &=-\left ((3 i a) \int \frac {1}{x \sqrt {1+a^2 x^2}} \, dx\right )+\left (4 i a^2\right ) \int \frac {1}{(-i+a x) \sqrt {1+a^2 x^2}} \, dx+\int \frac {1}{x^2 \sqrt {1+a^2 x^2}} \, dx\\ &=-\frac {\sqrt {1+a^2 x^2}}{x}+\frac {4 a \sqrt {1+a^2 x^2}}{i-a x}-\frac {1}{2} (3 i a) \text {Subst}\left (\int \frac {1}{x \sqrt {1+a^2 x}} \, dx,x,x^2\right )\\ &=-\frac {\sqrt {1+a^2 x^2}}{x}+\frac {4 a \sqrt {1+a^2 x^2}}{i-a x}-\frac {(3 i) \text {Subst}\left (\int \frac {1}{-\frac {1}{a^2}+\frac {x^2}{a^2}} \, dx,x,\sqrt {1+a^2 x^2}\right )}{a}\\ &=-\frac {\sqrt {1+a^2 x^2}}{x}+\frac {4 a \sqrt {1+a^2 x^2}}{i-a x}+3 i a \tanh ^{-1}\left (\sqrt {1+a^2 x^2}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.04, size = 61, normalized size = 0.95 \begin {gather*} \sqrt {1+a^2 x^2} \left (-\frac {1}{x}-\frac {4 a}{-i+a x}\right )-3 i a \log (x)+3 i a \log \left (1+\sqrt {1+a^2 x^2}\right ) \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(E^((3*I)*ArcTan[a*x])*x^2),x]

[Out]

Sqrt[1 + a^2*x^2]*(-x^(-1) - (4*a)/(-I + a*x)) - (3*I)*a*Log[x] + (3*I)*a*Log[1 + Sqrt[1 + a^2*x^2]]

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 579 vs. \(2 (56 ) = 112\).
time = 0.10, size = 580, normalized size = 9.06

method result size
risch \(-\frac {\sqrt {a^{2} x^{2}+1}}{x}+i a \left (\frac {4 i \sqrt {\left (x -\frac {i}{a}\right )^{2} a^{2}+2 i a \left (x -\frac {i}{a}\right )}}{a \left (x -\frac {i}{a}\right )}+3 \arctanh \left (\frac {1}{\sqrt {a^{2} x^{2}+1}}\right )\right )\) \(82\)
default \(9 i a \left (\frac {\left (\left (x -\frac {i}{a}\right )^{2} a^{2}+2 i a \left (x -\frac {i}{a}\right )\right )^{\frac {3}{2}}}{3}+i a \left (\frac {\left (2 \left (x -\frac {i}{a}\right ) a^{2}+2 i a \right ) \sqrt {\left (x -\frac {i}{a}\right )^{2} a^{2}+2 i a \left (x -\frac {i}{a}\right )}}{4 a^{2}}+\frac {\ln \left (\frac {i a +\left (x -\frac {i}{a}\right ) a^{2}}{\sqrt {a^{2}}}+\sqrt {\left (x -\frac {i}{a}\right )^{2} a^{2}+2 i a \left (x -\frac {i}{a}\right )}\right )}{2 \sqrt {a^{2}}}\right )\right )-\frac {2 i \left (\left (x -\frac {i}{a}\right )^{2} a^{2}+2 i a \left (x -\frac {i}{a}\right )\right )^{\frac {5}{2}}}{a \left (x -\frac {i}{a}\right )^{2}}-\frac {i \left (\frac {i \left (\left (x -\frac {i}{a}\right )^{2} a^{2}+2 i a \left (x -\frac {i}{a}\right )\right )^{\frac {5}{2}}}{a \left (x -\frac {i}{a}\right )^{3}}-2 i a \left (-\frac {i \left (\left (x -\frac {i}{a}\right )^{2} a^{2}+2 i a \left (x -\frac {i}{a}\right )\right )^{\frac {5}{2}}}{a \left (x -\frac {i}{a}\right )^{2}}+3 i a \left (\frac {\left (\left (x -\frac {i}{a}\right )^{2} a^{2}+2 i a \left (x -\frac {i}{a}\right )\right )^{\frac {3}{2}}}{3}+i a \left (\frac {\left (2 \left (x -\frac {i}{a}\right ) a^{2}+2 i a \right ) \sqrt {\left (x -\frac {i}{a}\right )^{2} a^{2}+2 i a \left (x -\frac {i}{a}\right )}}{4 a^{2}}+\frac {\ln \left (\frac {i a +\left (x -\frac {i}{a}\right ) a^{2}}{\sqrt {a^{2}}}+\sqrt {\left (x -\frac {i}{a}\right )^{2} a^{2}+2 i a \left (x -\frac {i}{a}\right )}\right )}{2 \sqrt {a^{2}}}\right )\right )\right )\right )}{a}-3 i a \left (\frac {\left (a^{2} x^{2}+1\right )^{\frac {3}{2}}}{3}+\sqrt {a^{2} x^{2}+1}-\arctanh \left (\frac {1}{\sqrt {a^{2} x^{2}+1}}\right )\right )-\frac {\left (a^{2} x^{2}+1\right )^{\frac {5}{2}}}{x}+4 a^{2} \left (\frac {x \left (a^{2} x^{2}+1\right )^{\frac {3}{2}}}{4}+\frac {3 x \sqrt {a^{2} x^{2}+1}}{8}+\frac {3 \ln \left (\frac {a^{2} x}{\sqrt {a^{2}}}+\sqrt {a^{2} x^{2}+1}\right )}{8 \sqrt {a^{2}}}\right )\) \(580\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1+I*a*x)^3*(a^2*x^2+1)^(3/2)/x^2,x,method=_RETURNVERBOSE)

[Out]

9*I*a*(1/3*((x-I/a)^2*a^2+2*I*a*(x-I/a))^(3/2)+I*a*(1/4*(2*(x-I/a)*a^2+2*I*a)/a^2*((x-I/a)^2*a^2+2*I*a*(x-I/a)
)^(1/2)+1/2*ln((I*a+(x-I/a)*a^2)/(a^2)^(1/2)+((x-I/a)^2*a^2+2*I*a*(x-I/a))^(1/2))/(a^2)^(1/2)))-2*I/a/(x-I/a)^
2*((x-I/a)^2*a^2+2*I*a*(x-I/a))^(5/2)-I/a*(I/a/(x-I/a)^3*((x-I/a)^2*a^2+2*I*a*(x-I/a))^(5/2)-2*I*a*(-I/a/(x-I/
a)^2*((x-I/a)^2*a^2+2*I*a*(x-I/a))^(5/2)+3*I*a*(1/3*((x-I/a)^2*a^2+2*I*a*(x-I/a))^(3/2)+I*a*(1/4*(2*(x-I/a)*a^
2+2*I*a)/a^2*((x-I/a)^2*a^2+2*I*a*(x-I/a))^(1/2)+1/2*ln((I*a+(x-I/a)*a^2)/(a^2)^(1/2)+((x-I/a)^2*a^2+2*I*a*(x-
I/a))^(1/2))/(a^2)^(1/2)))))-3*I*a*(1/3*(a^2*x^2+1)^(3/2)+(a^2*x^2+1)^(1/2)-arctanh(1/(a^2*x^2+1)^(1/2)))-1/x*
(a^2*x^2+1)^(5/2)+4*a^2*(1/4*x*(a^2*x^2+1)^(3/2)+3/8*x*(a^2*x^2+1)^(1/2)+3/8*ln(a^2*x/(a^2)^(1/2)+(a^2*x^2+1)^
(1/2))/(a^2)^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)^3*(a^2*x^2+1)^(3/2)/x^2,x, algorithm="maxima")

[Out]

integrate((a^2*x^2 + 1)^(3/2)/((I*a*x + 1)^3*x^2), x)

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 109 vs. \(2 (53) = 106\).
time = 4.65, size = 109, normalized size = 1.70 \begin {gather*} -\frac {5 \, a^{2} x^{2} - 5 i \, a x + 3 \, {\left (-i \, a^{2} x^{2} - a x\right )} \log \left (-a x + \sqrt {a^{2} x^{2} + 1} + 1\right ) + 3 \, {\left (i \, a^{2} x^{2} + a x\right )} \log \left (-a x + \sqrt {a^{2} x^{2} + 1} - 1\right ) + \sqrt {a^{2} x^{2} + 1} {\left (5 \, a x - i\right )}}{a x^{2} - i \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)^3*(a^2*x^2+1)^(3/2)/x^2,x, algorithm="fricas")

[Out]

-(5*a^2*x^2 - 5*I*a*x + 3*(-I*a^2*x^2 - a*x)*log(-a*x + sqrt(a^2*x^2 + 1) + 1) + 3*(I*a^2*x^2 + a*x)*log(-a*x
+ sqrt(a^2*x^2 + 1) - 1) + sqrt(a^2*x^2 + 1)*(5*a*x - I))/(a*x^2 - I*x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} i \left (\int \frac {\sqrt {a^{2} x^{2} + 1}}{a^{3} x^{5} - 3 i a^{2} x^{4} - 3 a x^{3} + i x^{2}}\, dx + \int \frac {a^{2} x^{2} \sqrt {a^{2} x^{2} + 1}}{a^{3} x^{5} - 3 i a^{2} x^{4} - 3 a x^{3} + i x^{2}}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)**3*(a**2*x**2+1)**(3/2)/x**2,x)

[Out]

I*(Integral(sqrt(a**2*x**2 + 1)/(a**3*x**5 - 3*I*a**2*x**4 - 3*a*x**3 + I*x**2), x) + Integral(a**2*x**2*sqrt(
a**2*x**2 + 1)/(a**3*x**5 - 3*I*a**2*x**4 - 3*a*x**3 + I*x**2), x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)^3*(a^2*x^2+1)^(3/2)/x^2,x, algorithm="giac")

[Out]

undef

________________________________________________________________________________________

Mupad [B]
time = 0.42, size = 76, normalized size = 1.19 \begin {gather*} a\,\mathrm {atanh}\left (\sqrt {a^2\,x^2+1}\right )\,3{}\mathrm {i}-\frac {\sqrt {a^2\,x^2+1}}{x}+\frac {4\,a^2\,\sqrt {a^2\,x^2+1}}{\left (-x\,\sqrt {a^2}+\frac {\sqrt {a^2}\,1{}\mathrm {i}}{a}\right )\,\sqrt {a^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2*x^2 + 1)^(3/2)/(x^2*(a*x*1i + 1)^3),x)

[Out]

a*atanh((a^2*x^2 + 1)^(1/2))*3i - (a^2*x^2 + 1)^(1/2)/x + (4*a^2*(a^2*x^2 + 1)^(1/2))/((((a^2)^(1/2)*1i)/a - x
*(a^2)^(1/2))*(a^2)^(1/2))

________________________________________________________________________________________