3.1.64 \(\int \frac {e^{\frac {1}{2} i \text {ArcTan}(a x)}}{x} \, dx\) [64]

Optimal. Leaf size=267 \[ -2 \text {ArcTan}\left (\frac {\sqrt [4]{1+i a x}}{\sqrt [4]{1-i a x}}\right )+\sqrt {2} \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )-\sqrt {2} \text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )-2 \tanh ^{-1}\left (\frac {\sqrt [4]{1+i a x}}{\sqrt [4]{1-i a x}}\right )-\frac {\log \left (1+\frac {\sqrt {1-i a x}}{\sqrt {1+i a x}}-\frac {\sqrt {2} \sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )}{\sqrt {2}}+\frac {\log \left (1+\frac {\sqrt {1-i a x}}{\sqrt {1+i a x}}+\frac {\sqrt {2} \sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )}{\sqrt {2}} \]

[Out]

-2*arctan((1+I*a*x)^(1/4)/(1-I*a*x)^(1/4))-2*arctanh((1+I*a*x)^(1/4)/(1-I*a*x)^(1/4))-1/2*ln(1-(1-I*a*x)^(1/4)
*2^(1/2)/(1+I*a*x)^(1/4)+(1-I*a*x)^(1/2)/(1+I*a*x)^(1/2))*2^(1/2)+1/2*ln(1+(1-I*a*x)^(1/4)*2^(1/2)/(1+I*a*x)^(
1/4)+(1-I*a*x)^(1/2)/(1+I*a*x)^(1/2))*2^(1/2)+arctan(1-(1-I*a*x)^(1/4)*2^(1/2)/(1+I*a*x)^(1/4))*2^(1/2)-arctan
(1+(1-I*a*x)^(1/4)*2^(1/2)/(1+I*a*x)^(1/4))*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 267, normalized size of antiderivative = 1.00, number of steps used = 17, number of rules used = 14, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.875, Rules used = {5170, 132, 65, 338, 303, 1176, 631, 210, 1179, 642, 95, 218, 212, 209} \begin {gather*} -2 \text {ArcTan}\left (\frac {\sqrt [4]{1+i a x}}{\sqrt [4]{1-i a x}}\right )+\sqrt {2} \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )-\sqrt {2} \text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )-\frac {\log \left (\frac {\sqrt {1-i a x}}{\sqrt {1+i a x}}-\frac {\sqrt {2} \sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}+1\right )}{\sqrt {2}}+\frac {\log \left (\frac {\sqrt {1-i a x}}{\sqrt {1+i a x}}+\frac {\sqrt {2} \sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}+1\right )}{\sqrt {2}}-2 \tanh ^{-1}\left (\frac {\sqrt [4]{1+i a x}}{\sqrt [4]{1-i a x}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^((I/2)*ArcTan[a*x])/x,x]

[Out]

-2*ArcTan[(1 + I*a*x)^(1/4)/(1 - I*a*x)^(1/4)] + Sqrt[2]*ArcTan[1 - (Sqrt[2]*(1 - I*a*x)^(1/4))/(1 + I*a*x)^(1
/4)] - Sqrt[2]*ArcTan[1 + (Sqrt[2]*(1 - I*a*x)^(1/4))/(1 + I*a*x)^(1/4)] - 2*ArcTanh[(1 + I*a*x)^(1/4)/(1 - I*
a*x)^(1/4)] - Log[1 + Sqrt[1 - I*a*x]/Sqrt[1 + I*a*x] - (Sqrt[2]*(1 - I*a*x)^(1/4))/(1 + I*a*x)^(1/4)]/Sqrt[2]
 + Log[1 + Sqrt[1 - I*a*x]/Sqrt[1 + I*a*x] + (Sqrt[2]*(1 - I*a*x)^(1/4))/(1 + I*a*x)^(1/4)]/Sqrt[2]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 132

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[b*d^(m
+ n)*f^p, Int[(a + b*x)^(m - 1)/(c + d*x)^m, x], x] + Int[(a + b*x)^(m - 1)*((e + f*x)^p/(c + d*x)^m)*ExpandTo
Sum[(a + b*x)*(c + d*x)^(-p - 1) - (b*d^(-p - 1)*f^p)/(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
] && EqQ[m + n + p + 1, 0] && ILtQ[p, 0] && (GtQ[m, 0] || SumSimplerQ[m, -1] ||  !(GtQ[n, 0] || SumSimplerQ[n,
 -1]))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 338

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + (m + 1)/n), Subst[Int[x^m/(1 - b*x^n)^(
p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[
p, -2^(-1)] && IntegersQ[m, p + (m + 1)/n]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 5170

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.), x_Symbol] :> Int[x^m*((1 - I*a*x)^(I*(n/2))/(1 + I*a*x)^(I*(n/2))
), x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[(I*n - 1)/2]

Rubi steps

\begin {align*} \int \frac {e^{\frac {1}{2} i \tan ^{-1}(a x)}}{x} \, dx &=\int \frac {\sqrt [4]{1+i a x}}{x \sqrt [4]{1-i a x}} \, dx\\ &=(i a) \int \frac {1}{\sqrt [4]{1-i a x} (1+i a x)^{3/4}} \, dx+\int \frac {1}{x \sqrt [4]{1-i a x} (1+i a x)^{3/4}} \, dx\\ &=-\left (4 \text {Subst}\left (\int \frac {x^2}{\left (2-x^4\right )^{3/4}} \, dx,x,\sqrt [4]{1-i a x}\right )\right )+4 \text {Subst}\left (\int \frac {1}{-1+x^4} \, dx,x,\frac {\sqrt [4]{1+i a x}}{\sqrt [4]{1-i a x}}\right )\\ &=-\left (2 \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {\sqrt [4]{1+i a x}}{\sqrt [4]{1-i a x}}\right )\right )-2 \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\frac {\sqrt [4]{1+i a x}}{\sqrt [4]{1-i a x}}\right )-4 \text {Subst}\left (\int \frac {x^2}{1+x^4} \, dx,x,\frac {\sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )\\ &=-2 \tan ^{-1}\left (\frac {\sqrt [4]{1+i a x}}{\sqrt [4]{1-i a x}}\right )-2 \tanh ^{-1}\left (\frac {\sqrt [4]{1+i a x}}{\sqrt [4]{1-i a x}}\right )+2 \text {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\frac {\sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )-2 \text {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\frac {\sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )\\ &=-2 \tan ^{-1}\left (\frac {\sqrt [4]{1+i a x}}{\sqrt [4]{1-i a x}}\right )-2 \tanh ^{-1}\left (\frac {\sqrt [4]{1+i a x}}{\sqrt [4]{1-i a x}}\right )-\frac {\text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\frac {\sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )}{\sqrt {2}}-\frac {\text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\frac {\sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )}{\sqrt {2}}-\text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\frac {\sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )-\text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\frac {\sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )\\ &=-2 \tan ^{-1}\left (\frac {\sqrt [4]{1+i a x}}{\sqrt [4]{1-i a x}}\right )-2 \tanh ^{-1}\left (\frac {\sqrt [4]{1+i a x}}{\sqrt [4]{1-i a x}}\right )-\frac {\log \left (1+\frac {\sqrt {1-i a x}}{\sqrt {1+i a x}}-\frac {\sqrt {2} \sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )}{\sqrt {2}}+\frac {\log \left (1+\frac {\sqrt {1-i a x}}{\sqrt {1+i a x}}+\frac {\sqrt {2} \sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )}{\sqrt {2}}-\sqrt {2} \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )+\sqrt {2} \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )\\ &=-2 \tan ^{-1}\left (\frac {\sqrt [4]{1+i a x}}{\sqrt [4]{1-i a x}}\right )+\sqrt {2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )-\sqrt {2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )-2 \tanh ^{-1}\left (\frac {\sqrt [4]{1+i a x}}{\sqrt [4]{1-i a x}}\right )-\frac {\log \left (1+\frac {\sqrt {1-i a x}}{\sqrt {1+i a x}}-\frac {\sqrt {2} \sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )}{\sqrt {2}}+\frac {\log \left (1+\frac {\sqrt {1-i a x}}{\sqrt {1+i a x}}+\frac {\sqrt {2} \sqrt [4]{1-i a x}}{\sqrt [4]{1+i a x}}\right )}{\sqrt {2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.03, size = 97, normalized size = 0.36 \begin {gather*} -\frac {2 (1-i a x)^{3/4} \left (\sqrt [4]{2} (1+i a x)^{3/4} \, _2F_1\left (\frac {3}{4},\frac {3}{4};\frac {7}{4};\frac {1}{2} (1-i a x)\right )+2 \, _2F_1\left (\frac {3}{4},1;\frac {7}{4};\frac {i+a x}{i-a x}\right )\right )}{3 (1+i a x)^{3/4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^((I/2)*ArcTan[a*x])/x,x]

[Out]

(-2*(1 - I*a*x)^(3/4)*(2^(1/4)*(1 + I*a*x)^(3/4)*Hypergeometric2F1[3/4, 3/4, 7/4, (1 - I*a*x)/2] + 2*Hypergeom
etric2F1[3/4, 1, 7/4, (I + a*x)/(I - a*x)]))/(3*(1 + I*a*x)^(3/4))

________________________________________________________________________________________

Maple [F]
time = 0.00, size = 0, normalized size = 0.00 \[\int \frac {\sqrt {\frac {i a x +1}{\sqrt {a^{2} x^{2}+1}}}}{x}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1+I*a*x)/(a^2*x^2+1)^(1/2))^(1/2)/x,x)

[Out]

int(((1+I*a*x)/(a^2*x^2+1)^(1/2))^(1/2)/x,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1+I*a*x)/(a^2*x^2+1)^(1/2))^(1/2)/x,x, algorithm="maxima")

[Out]

integrate(sqrt((I*a*x + 1)/sqrt(a^2*x^2 + 1))/x, x)

________________________________________________________________________________________

Fricas [A]
time = 2.68, size = 243, normalized size = 0.91 \begin {gather*} \frac {1}{2} \, \sqrt {4 i} \log \left (\frac {1}{2} \, \sqrt {4 i} + \sqrt {\frac {i \, \sqrt {a^{2} x^{2} + 1}}{a x + i}}\right ) - \frac {1}{2} \, \sqrt {4 i} \log \left (-\frac {1}{2} \, \sqrt {4 i} + \sqrt {\frac {i \, \sqrt {a^{2} x^{2} + 1}}{a x + i}}\right ) + \frac {1}{2} \, \sqrt {-4 i} \log \left (\frac {1}{2} \, \sqrt {-4 i} + \sqrt {\frac {i \, \sqrt {a^{2} x^{2} + 1}}{a x + i}}\right ) - \frac {1}{2} \, \sqrt {-4 i} \log \left (-\frac {1}{2} \, \sqrt {-4 i} + \sqrt {\frac {i \, \sqrt {a^{2} x^{2} + 1}}{a x + i}}\right ) - \log \left (\sqrt {\frac {i \, \sqrt {a^{2} x^{2} + 1}}{a x + i}} + 1\right ) - i \, \log \left (\sqrt {\frac {i \, \sqrt {a^{2} x^{2} + 1}}{a x + i}} + i\right ) + i \, \log \left (\sqrt {\frac {i \, \sqrt {a^{2} x^{2} + 1}}{a x + i}} - i\right ) + \log \left (\sqrt {\frac {i \, \sqrt {a^{2} x^{2} + 1}}{a x + i}} - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1+I*a*x)/(a^2*x^2+1)^(1/2))^(1/2)/x,x, algorithm="fricas")

[Out]

1/2*sqrt(4*I)*log(1/2*sqrt(4*I) + sqrt(I*sqrt(a^2*x^2 + 1)/(a*x + I))) - 1/2*sqrt(4*I)*log(-1/2*sqrt(4*I) + sq
rt(I*sqrt(a^2*x^2 + 1)/(a*x + I))) + 1/2*sqrt(-4*I)*log(1/2*sqrt(-4*I) + sqrt(I*sqrt(a^2*x^2 + 1)/(a*x + I)))
- 1/2*sqrt(-4*I)*log(-1/2*sqrt(-4*I) + sqrt(I*sqrt(a^2*x^2 + 1)/(a*x + I))) - log(sqrt(I*sqrt(a^2*x^2 + 1)/(a*
x + I)) + 1) - I*log(sqrt(I*sqrt(a^2*x^2 + 1)/(a*x + I)) + I) + I*log(sqrt(I*sqrt(a^2*x^2 + 1)/(a*x + I)) - I)
 + log(sqrt(I*sqrt(a^2*x^2 + 1)/(a*x + I)) - 1)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {\frac {i \left (a x - i\right )}{\sqrt {a^{2} x^{2} + 1}}}}{x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1+I*a*x)/(a**2*x**2+1)**(1/2))**(1/2)/x,x)

[Out]

Integral(sqrt(I*(a*x - I)/sqrt(a**2*x**2 + 1))/x, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1+I*a*x)/(a^2*x^2+1)^(1/2))^(1/2)/x,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.The choi
ce was done

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {\frac {1+a\,x\,1{}\mathrm {i}}{\sqrt {a^2\,x^2+1}}}}{x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x*1i + 1)/(a^2*x^2 + 1)^(1/2))^(1/2)/x,x)

[Out]

int(((a*x*1i + 1)/(a^2*x^2 + 1)^(1/2))^(1/2)/x, x)

________________________________________________________________________________________