3.2.37 \(\int \frac {A+B \sinh (x)}{\sqrt {a+b \sinh (x)}} \, dx\) [137]

Optimal. Leaf size=136 \[ \frac {2 i B E\left (\frac {\pi }{4}-\frac {i x}{2}|\frac {2 b}{i a+b}\right ) \sqrt {a+b \sinh (x)}}{b \sqrt {\frac {a+b \sinh (x)}{a-i b}}}+\frac {2 i (A b-a B) F\left (\frac {\pi }{4}-\frac {i x}{2}|\frac {2 b}{i a+b}\right ) \sqrt {\frac {a+b \sinh (x)}{a-i b}}}{b \sqrt {a+b \sinh (x)}} \]

[Out]

2*I*B*(sin(1/4*Pi+1/2*I*x)^2)^(1/2)/sin(1/4*Pi+1/2*I*x)*EllipticE(cos(1/4*Pi+1/2*I*x),2^(1/2)*(b/(I*a+b))^(1/2
))*(a+b*sinh(x))^(1/2)/b/((a+b*sinh(x))/(a-I*b))^(1/2)+2*I*(A*b-B*a)*(sin(1/4*Pi+1/2*I*x)^2)^(1/2)/sin(1/4*Pi+
1/2*I*x)*EllipticF(cos(1/4*Pi+1/2*I*x),2^(1/2)*(b/(I*a+b))^(1/2))*((a+b*sinh(x))/(a-I*b))^(1/2)/b/(a+b*sinh(x)
)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {2831, 2742, 2740, 2734, 2732} \begin {gather*} \frac {2 i (A b-a B) \sqrt {\frac {a+b \sinh (x)}{a-i b}} F\left (\frac {\pi }{4}-\frac {i x}{2}|\frac {2 b}{i a+b}\right )}{b \sqrt {a+b \sinh (x)}}+\frac {2 i B \sqrt {a+b \sinh (x)} E\left (\frac {\pi }{4}-\frac {i x}{2}|\frac {2 b}{i a+b}\right )}{b \sqrt {\frac {a+b \sinh (x)}{a-i b}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*Sinh[x])/Sqrt[a + b*Sinh[x]],x]

[Out]

((2*I)*B*EllipticE[Pi/4 - (I/2)*x, (2*b)/(I*a + b)]*Sqrt[a + b*Sinh[x]])/(b*Sqrt[(a + b*Sinh[x])/(a - I*b)]) +
 ((2*I)*(A*b - a*B)*EllipticF[Pi/4 - (I/2)*x, (2*b)/(I*a + b)]*Sqrt[(a + b*Sinh[x])/(a - I*b)])/(b*Sqrt[a + b*
Sinh[x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2831

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {A+B \sinh (x)}{\sqrt {a+b \sinh (x)}} \, dx &=\frac {B \int \sqrt {a+b \sinh (x)} \, dx}{b}+\frac {(i (-i A b+i a B)) \int \frac {1}{\sqrt {a+b \sinh (x)}} \, dx}{b}\\ &=\frac {\left (B \sqrt {a+b \sinh (x)}\right ) \int \sqrt {\frac {a}{a-i b}+\frac {b \sinh (x)}{a-i b}} \, dx}{b \sqrt {\frac {a+b \sinh (x)}{a-i b}}}+\frac {\left (i (-i A b+i a B) \sqrt {\frac {a+b \sinh (x)}{a-i b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a-i b}+\frac {b \sinh (x)}{a-i b}}} \, dx}{b \sqrt {a+b \sinh (x)}}\\ &=\frac {2 i B E\left (\frac {\pi }{4}-\frac {i x}{2}|\frac {2 b}{i a+b}\right ) \sqrt {a+b \sinh (x)}}{b \sqrt {\frac {a+b \sinh (x)}{a-i b}}}+\frac {2 i (A b-a B) F\left (\frac {\pi }{4}-\frac {i x}{2}|\frac {2 b}{i a+b}\right ) \sqrt {\frac {a+b \sinh (x)}{a-i b}}}{b \sqrt {a+b \sinh (x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.38, size = 109, normalized size = 0.80 \begin {gather*} \frac {2 \left ((i a+b) B E\left (\frac {1}{4} (\pi -2 i x)|-\frac {2 i b}{a-i b}\right )+i (A b-a B) F\left (\frac {1}{4} (\pi -2 i x)|-\frac {2 i b}{a-i b}\right )\right ) \sqrt {\frac {a+b \sinh (x)}{a-i b}}}{b \sqrt {a+b \sinh (x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Sinh[x])/Sqrt[a + b*Sinh[x]],x]

[Out]

(2*((I*a + b)*B*EllipticE[(Pi - (2*I)*x)/4, ((-2*I)*b)/(a - I*b)] + I*(A*b - a*B)*EllipticF[(Pi - (2*I)*x)/4,
((-2*I)*b)/(a - I*b)])*Sqrt[(a + b*Sinh[x])/(a - I*b)])/(b*Sqrt[a + b*Sinh[x]])

________________________________________________________________________________________

Maple [A]
time = 1.12, size = 266, normalized size = 1.96

method result size
default \(-\frac {2 \left (i b -a \right ) \sqrt {-\frac {a +b \sinh \left (x \right )}{i b -a}}\, \sqrt {\frac {\left (i-\sinh \left (x \right )\right ) b}{i b +a}}\, \sqrt {\frac {\left (i+\sinh \left (x \right )\right ) b}{i b -a}}\, \left (-i B \EllipticE \left (\sqrt {-\frac {a +b \sinh \left (x \right )}{i b -a}}, \sqrt {-\frac {i b -a}{i b +a}}\right ) b +i B \EllipticF \left (\sqrt {-\frac {a +b \sinh \left (x \right )}{i b -a}}, \sqrt {-\frac {i b -a}{i b +a}}\right ) b +A \EllipticF \left (\sqrt {-\frac {a +b \sinh \left (x \right )}{i b -a}}, \sqrt {-\frac {i b -a}{i b +a}}\right ) b -B \EllipticE \left (\sqrt {-\frac {a +b \sinh \left (x \right )}{i b -a}}, \sqrt {-\frac {i b -a}{i b +a}}\right ) a \right )}{b^{2} \cosh \left (x \right ) \sqrt {a +b \sinh \left (x \right )}}\) \(266\)
risch \(\frac {B \left (b \,{\mathrm e}^{2 x}+2 a \,{\mathrm e}^{x}-b \right ) \sqrt {2}\, {\mathrm e}^{-x}}{b \sqrt {\left (b \,{\mathrm e}^{2 x}+2 a \,{\mathrm e}^{x}-b \right ) {\mathrm e}^{-x}}}+\frac {\left (\frac {4 A \left (a +\sqrt {a^{2}+b^{2}}\right ) \sqrt {\frac {\left ({\mathrm e}^{x}+\frac {a +\sqrt {a^{2}+b^{2}}}{b}\right ) b}{a +\sqrt {a^{2}+b^{2}}}}\, \sqrt {\frac {{\mathrm e}^{x}-\frac {-a +\sqrt {a^{2}+b^{2}}}{b}}{-\frac {a +\sqrt {a^{2}+b^{2}}}{b}-\frac {-a +\sqrt {a^{2}+b^{2}}}{b}}}\, \sqrt {-\frac {{\mathrm e}^{x} b}{a +\sqrt {a^{2}+b^{2}}}}\, \EllipticF \left (\sqrt {\frac {\left ({\mathrm e}^{x}+\frac {a +\sqrt {a^{2}+b^{2}}}{b}\right ) b}{a +\sqrt {a^{2}+b^{2}}}}, \sqrt {-\frac {a +\sqrt {a^{2}+b^{2}}}{b \left (-\frac {a +\sqrt {a^{2}+b^{2}}}{b}-\frac {-a +\sqrt {a^{2}+b^{2}}}{b}\right )}}\right )}{b \sqrt {{\mathrm e}^{3 x} b +2 \,{\mathrm e}^{2 x} a -{\mathrm e}^{x} b}}-2 B \left (\frac {2 b \,{\mathrm e}^{2 x}+4 a \,{\mathrm e}^{x}-2 b}{b \sqrt {\left (b \,{\mathrm e}^{2 x}+2 a \,{\mathrm e}^{x}-b \right ) {\mathrm e}^{x}}}-\frac {2 \left (a +\sqrt {a^{2}+b^{2}}\right ) \sqrt {\frac {\left ({\mathrm e}^{x}+\frac {a +\sqrt {a^{2}+b^{2}}}{b}\right ) b}{a +\sqrt {a^{2}+b^{2}}}}\, \sqrt {\frac {{\mathrm e}^{x}-\frac {-a +\sqrt {a^{2}+b^{2}}}{b}}{-\frac {a +\sqrt {a^{2}+b^{2}}}{b}-\frac {-a +\sqrt {a^{2}+b^{2}}}{b}}}\, \sqrt {-\frac {{\mathrm e}^{x} b}{a +\sqrt {a^{2}+b^{2}}}}\, \left (\left (-\frac {a +\sqrt {a^{2}+b^{2}}}{b}-\frac {-a +\sqrt {a^{2}+b^{2}}}{b}\right ) \EllipticE \left (\sqrt {\frac {\left ({\mathrm e}^{x}+\frac {a +\sqrt {a^{2}+b^{2}}}{b}\right ) b}{a +\sqrt {a^{2}+b^{2}}}}, \sqrt {-\frac {a +\sqrt {a^{2}+b^{2}}}{b \left (-\frac {a +\sqrt {a^{2}+b^{2}}}{b}-\frac {-a +\sqrt {a^{2}+b^{2}}}{b}\right )}}\right )+\frac {\left (-a +\sqrt {a^{2}+b^{2}}\right ) \EllipticF \left (\sqrt {\frac {\left ({\mathrm e}^{x}+\frac {a +\sqrt {a^{2}+b^{2}}}{b}\right ) b}{a +\sqrt {a^{2}+b^{2}}}}, \sqrt {-\frac {a +\sqrt {a^{2}+b^{2}}}{b \left (-\frac {a +\sqrt {a^{2}+b^{2}}}{b}-\frac {-a +\sqrt {a^{2}+b^{2}}}{b}\right )}}\right )}{b}\right )}{b \sqrt {{\mathrm e}^{3 x} b +2 \,{\mathrm e}^{2 x} a -{\mathrm e}^{x} b}}\right )\right ) \sqrt {2}\, \sqrt {\left (b \,{\mathrm e}^{2 x}+2 a \,{\mathrm e}^{x}-b \right ) {\mathrm e}^{x}}\, {\mathrm e}^{-x}}{2 \sqrt {\left (b \,{\mathrm e}^{2 x}+2 a \,{\mathrm e}^{x}-b \right ) {\mathrm e}^{-x}}}\) \(781\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sinh(x))/(a+b*sinh(x))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*(I*b-a)*(-(a+b*sinh(x))/(I*b-a))^(1/2)*((I-sinh(x))*b/(I*b+a))^(1/2)*((I+sinh(x))*b/(I*b-a))^(1/2)*(-I*B*El
lipticE((-(a+b*sinh(x))/(I*b-a))^(1/2),(-(I*b-a)/(I*b+a))^(1/2))*b+I*B*EllipticF((-(a+b*sinh(x))/(I*b-a))^(1/2
),(-(I*b-a)/(I*b+a))^(1/2))*b+A*EllipticF((-(a+b*sinh(x))/(I*b-a))^(1/2),(-(I*b-a)/(I*b+a))^(1/2))*b-B*Ellipti
cE((-(a+b*sinh(x))/(I*b-a))^(1/2),(-(I*b-a)/(I*b+a))^(1/2))*a)/b^2/cosh(x)/(a+b*sinh(x))^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sinh(x))/(a+b*sinh(x))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sinh(x) + A)/sqrt(b*sinh(x) + a), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.11, size = 183, normalized size = 1.35 \begin {gather*} -\frac {2 \, {\left (3 \, \sqrt {2} B b^{\frac {3}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} + 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} + 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} + 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} + 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cosh \left (x\right ) + 3 \, b \sinh \left (x\right ) + 2 \, a}{3 \, b}\right )\right ) + \sqrt {2} {\left (2 \, B a - 3 \, A b\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} + 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} + 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cosh \left (x\right ) + 3 \, b \sinh \left (x\right ) + 2 \, a}{3 \, b}\right ) + 3 \, \sqrt {b \sinh \left (x\right ) + a} B b\right )}}{3 \, b^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sinh(x))/(a+b*sinh(x))^(1/2),x, algorithm="fricas")

[Out]

-2/3*(3*sqrt(2)*B*b^(3/2)*weierstrassZeta(4/3*(4*a^2 + 3*b^2)/b^2, -8/27*(8*a^3 + 9*a*b^2)/b^3, weierstrassPIn
verse(4/3*(4*a^2 + 3*b^2)/b^2, -8/27*(8*a^3 + 9*a*b^2)/b^3, 1/3*(3*b*cosh(x) + 3*b*sinh(x) + 2*a)/b)) + sqrt(2
)*(2*B*a - 3*A*b)*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 + 3*b^2)/b^2, -8/27*(8*a^3 + 9*a*b^2)/b^3, 1/3*(3*b*c
osh(x) + 3*b*sinh(x) + 2*a)/b) + 3*sqrt(b*sinh(x) + a)*B*b)/b^2

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {A + B \sinh {\left (x \right )}}{\sqrt {a + b \sinh {\left (x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sinh(x))/(a+b*sinh(x))**(1/2),x)

[Out]

Integral((A + B*sinh(x))/sqrt(a + b*sinh(x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sinh(x))/(a+b*sinh(x))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sinh(x) + A)/sqrt(b*sinh(x) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {A+B\,\mathrm {sinh}\left (x\right )}{\sqrt {a+b\,\mathrm {sinh}\left (x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*sinh(x))/(a + b*sinh(x))^(1/2),x)

[Out]

int((A + B*sinh(x))/(a + b*sinh(x))^(1/2), x)

________________________________________________________________________________________