3.3.80 \(\int \frac {\sinh ^{\frac {3}{2}}(a+b \log (c x^n))}{x} \, dx\) [280]

Optimal. Leaf size=111 \[ \frac {2 i F\left (\left .\frac {1}{2} \left (i a-\frac {\pi }{2}+i b \log \left (c x^n\right )\right )\right |2\right ) \sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )}}{3 b n \sqrt {\sinh \left (a+b \log \left (c x^n\right )\right )}}+\frac {2 \cosh \left (a+b \log \left (c x^n\right )\right ) \sqrt {\sinh \left (a+b \log \left (c x^n\right )\right )}}{3 b n} \]

[Out]

-2/3*I*(sin(1/2*I*a+1/4*Pi+1/2*I*b*ln(c*x^n))^2)^(1/2)/sin(1/2*I*a+1/4*Pi+1/2*I*b*ln(c*x^n))*EllipticF(cos(1/2
*I*a+1/4*Pi+1/2*I*b*ln(c*x^n)),2^(1/2))*(I*sinh(a+b*ln(c*x^n)))^(1/2)/b/n/sinh(a+b*ln(c*x^n))^(1/2)+2/3*cosh(a
+b*ln(c*x^n))*sinh(a+b*ln(c*x^n))^(1/2)/b/n

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {2715, 2721, 2720} \begin {gather*} \frac {2 \sqrt {\sinh \left (a+b \log \left (c x^n\right )\right )} \cosh \left (a+b \log \left (c x^n\right )\right )}{3 b n}+\frac {2 i \sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )} F\left (\left .\frac {1}{2} \left (i a+i b \log \left (c x^n\right )-\frac {\pi }{2}\right )\right |2\right )}{3 b n \sqrt {\sinh \left (a+b \log \left (c x^n\right )\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sinh[a + b*Log[c*x^n]]^(3/2)/x,x]

[Out]

(((2*I)/3)*EllipticF[(I*a - Pi/2 + I*b*Log[c*x^n])/2, 2]*Sqrt[I*Sinh[a + b*Log[c*x^n]]])/(b*n*Sqrt[Sinh[a + b*
Log[c*x^n]]]) + (2*Cosh[a + b*Log[c*x^n]]*Sqrt[Sinh[a + b*Log[c*x^n]]])/(3*b*n)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rubi steps

\begin {align*} \int \frac {\sinh ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx &=\frac {\text {Subst}\left (\int \sinh ^{\frac {3}{2}}(a+b x) \, dx,x,\log \left (c x^n\right )\right )}{n}\\ &=\frac {2 \cosh \left (a+b \log \left (c x^n\right )\right ) \sqrt {\sinh \left (a+b \log \left (c x^n\right )\right )}}{3 b n}-\frac {\text {Subst}\left (\int \frac {1}{\sqrt {\sinh (a+b x)}} \, dx,x,\log \left (c x^n\right )\right )}{3 n}\\ &=\frac {2 \cosh \left (a+b \log \left (c x^n\right )\right ) \sqrt {\sinh \left (a+b \log \left (c x^n\right )\right )}}{3 b n}-\frac {\sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )} \text {Subst}\left (\int \frac {1}{\sqrt {i \sinh (a+b x)}} \, dx,x,\log \left (c x^n\right )\right )}{3 n \sqrt {\sinh \left (a+b \log \left (c x^n\right )\right )}}\\ &=\frac {2 i F\left (\left .\frac {1}{2} \left (i a-\frac {\pi }{2}+i b \log \left (c x^n\right )\right )\right |2\right ) \sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )}}{3 b n \sqrt {\sinh \left (a+b \log \left (c x^n\right )\right )}}+\frac {2 \cosh \left (a+b \log \left (c x^n\right )\right ) \sqrt {\sinh \left (a+b \log \left (c x^n\right )\right )}}{3 b n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.10, size = 114, normalized size = 1.03 \begin {gather*} \frac {-2 \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\cosh \left (2 \left (a+b \log \left (c x^n\right )\right )\right )+\sinh \left (2 \left (a+b \log \left (c x^n\right )\right )\right )\right ) \sqrt {1-\cosh \left (2 \left (a+b \log \left (c x^n\right )\right )\right )-\sinh \left (2 \left (a+b \log \left (c x^n\right )\right )\right )}+\sinh \left (2 \left (a+b \log \left (c x^n\right )\right )\right )}{3 b n \sqrt {\sinh \left (a+b \log \left (c x^n\right )\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sinh[a + b*Log[c*x^n]]^(3/2)/x,x]

[Out]

(-2*Hypergeometric2F1[1/4, 1/2, 5/4, Cosh[2*(a + b*Log[c*x^n])] + Sinh[2*(a + b*Log[c*x^n])]]*Sqrt[1 - Cosh[2*
(a + b*Log[c*x^n])] - Sinh[2*(a + b*Log[c*x^n])]] + Sinh[2*(a + b*Log[c*x^n])])/(3*b*n*Sqrt[Sinh[a + b*Log[c*x
^n]]])

________________________________________________________________________________________

Maple [A]
time = 7.13, size = 143, normalized size = 1.29

method result size
derivativedivides \(\frac {-\frac {i \sqrt {1-i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \sqrt {2}\, \sqrt {1+i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \sqrt {i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \EllipticF \left (\sqrt {1-i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}, \frac {\sqrt {2}}{2}\right )}{3}+\frac {2 \left (\cosh ^{2}\left (a +b \ln \left (c \,x^{n}\right )\right )\right ) \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}{3}}{n \cosh \left (a +b \ln \left (c \,x^{n}\right )\right ) \sqrt {\sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, b}\) \(143\)
default \(\frac {-\frac {i \sqrt {1-i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \sqrt {2}\, \sqrt {1+i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \sqrt {i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \EllipticF \left (\sqrt {1-i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}, \frac {\sqrt {2}}{2}\right )}{3}+\frac {2 \left (\cosh ^{2}\left (a +b \ln \left (c \,x^{n}\right )\right )\right ) \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}{3}}{n \cosh \left (a +b \ln \left (c \,x^{n}\right )\right ) \sqrt {\sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, b}\) \(143\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(a+b*ln(c*x^n))^(3/2)/x,x,method=_RETURNVERBOSE)

[Out]

1/n*(-1/3*I*(1-I*sinh(a+b*ln(c*x^n)))^(1/2)*2^(1/2)*(1+I*sinh(a+b*ln(c*x^n)))^(1/2)*(I*sinh(a+b*ln(c*x^n)))^(1
/2)*EllipticF((1-I*sinh(a+b*ln(c*x^n)))^(1/2),1/2*2^(1/2))+2/3*cosh(a+b*ln(c*x^n))^2*sinh(a+b*ln(c*x^n)))/cosh
(a+b*ln(c*x^n))/sinh(a+b*ln(c*x^n))^(1/2)/b

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(a+b*log(c*x^n))^(3/2)/x,x, algorithm="maxima")

[Out]

integrate(sinh(b*log(c*x^n) + a)^(3/2)/x, x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.09, size = 171, normalized size = 1.54 \begin {gather*} -\frac {2 \, {\left (\sqrt {2} \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sqrt {2} \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )} {\rm weierstrassPInverse}\left (4, 0, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right ) - {\left (\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 2 \, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 1\right )} \sqrt {\sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )}}{3 \, {\left (b n \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + b n \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(a+b*log(c*x^n))^(3/2)/x,x, algorithm="fricas")

[Out]

-1/3*(2*(sqrt(2)*cosh(b*n*log(x) + b*log(c) + a) + sqrt(2)*sinh(b*n*log(x) + b*log(c) + a))*weierstrassPInvers
e(4, 0, cosh(b*n*log(x) + b*log(c) + a) + sinh(b*n*log(x) + b*log(c) + a)) - (cosh(b*n*log(x) + b*log(c) + a)^
2 + 2*cosh(b*n*log(x) + b*log(c) + a)*sinh(b*n*log(x) + b*log(c) + a) + sinh(b*n*log(x) + b*log(c) + a)^2 + 1)
*sqrt(sinh(b*n*log(x) + b*log(c) + a)))/(b*n*cosh(b*n*log(x) + b*log(c) + a) + b*n*sinh(b*n*log(x) + b*log(c)
+ a))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sinh ^{\frac {3}{2}}{\left (a + b \log {\left (c x^{n} \right )} \right )}}{x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(a+b*ln(c*x**n))**(3/2)/x,x)

[Out]

Integral(sinh(a + b*log(c*x**n))**(3/2)/x, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(a+b*log(c*x^n))^(3/2)/x,x, algorithm="giac")

[Out]

integrate(sinh(b*log(c*x^n) + a)^(3/2)/x, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\mathrm {sinh}\left (a+b\,\ln \left (c\,x^n\right )\right )}^{3/2}}{x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(a + b*log(c*x^n))^(3/2)/x,x)

[Out]

int(sinh(a + b*log(c*x^n))^(3/2)/x, x)

________________________________________________________________________________________