3.4.35 \(\int \frac {e^{c (a+b x)}}{\sinh ^2(a c+b c x)^{7/2}} \, dx\) [335]

Optimal. Leaf size=199 \[ -\frac {32 \sinh (a c+b c x)}{3 b c \left (1-e^{2 c (a+b x)}\right )^6 \sqrt {\sinh ^2(a c+b c x)}}+\frac {192 \sinh (a c+b c x)}{5 b c \left (1-e^{2 c (a+b x)}\right )^5 \sqrt {\sinh ^2(a c+b c x)}}-\frac {48 \sinh (a c+b c x)}{b c \left (1-e^{2 c (a+b x)}\right )^4 \sqrt {\sinh ^2(a c+b c x)}}+\frac {64 \sinh (a c+b c x)}{3 b c \left (1-e^{2 c (a+b x)}\right )^3 \sqrt {\sinh ^2(a c+b c x)}} \]

[Out]

-32/3*sinh(b*c*x+a*c)/b/c/(1-exp(2*c*(b*x+a)))^6/(sinh(b*c*x+a*c)^2)^(1/2)+192/5*sinh(b*c*x+a*c)/b/c/(1-exp(2*
c*(b*x+a)))^5/(sinh(b*c*x+a*c)^2)^(1/2)-48*sinh(b*c*x+a*c)/b/c/(1-exp(2*c*(b*x+a)))^4/(sinh(b*c*x+a*c)^2)^(1/2
)+64/3*sinh(b*c*x+a*c)/b/c/(1-exp(2*c*(b*x+a)))^3/(sinh(b*c*x+a*c)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.20, antiderivative size = 199, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {6852, 2320, 12, 272, 45} \begin {gather*} \frac {64 \sinh (a c+b c x)}{3 b c \left (1-e^{2 c (a+b x)}\right )^3 \sqrt {\sinh ^2(a c+b c x)}}-\frac {48 \sinh (a c+b c x)}{b c \left (1-e^{2 c (a+b x)}\right )^4 \sqrt {\sinh ^2(a c+b c x)}}+\frac {192 \sinh (a c+b c x)}{5 b c \left (1-e^{2 c (a+b x)}\right )^5 \sqrt {\sinh ^2(a c+b c x)}}-\frac {32 \sinh (a c+b c x)}{3 b c \left (1-e^{2 c (a+b x)}\right )^6 \sqrt {\sinh ^2(a c+b c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^(c*(a + b*x))/(Sinh[a*c + b*c*x]^2)^(7/2),x]

[Out]

(-32*Sinh[a*c + b*c*x])/(3*b*c*(1 - E^(2*c*(a + b*x)))^6*Sqrt[Sinh[a*c + b*c*x]^2]) + (192*Sinh[a*c + b*c*x])/
(5*b*c*(1 - E^(2*c*(a + b*x)))^5*Sqrt[Sinh[a*c + b*c*x]^2]) - (48*Sinh[a*c + b*c*x])/(b*c*(1 - E^(2*c*(a + b*x
)))^4*Sqrt[Sinh[a*c + b*c*x]^2]) + (64*Sinh[a*c + b*c*x])/(3*b*c*(1 - E^(2*c*(a + b*x)))^3*Sqrt[Sinh[a*c + b*c
*x]^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 2320

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 6852

Int[(u_.)*((a_.)*(v_)^(m_.))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a*v^m)^FracPart[p]/v^(m*FracPart[p])), Int
[u*v^(m*p), x], x] /; FreeQ[{a, m, p}, x] &&  !IntegerQ[p] &&  !FreeQ[v, x] &&  !(EqQ[a, 1] && EqQ[m, 1]) &&
!(EqQ[v, x] && EqQ[m, 1])

Rubi steps

\begin {align*} \int \frac {e^{c (a+b x)}}{\sinh ^2(a c+b c x)^{7/2}} \, dx &=\frac {\sinh (a c+b c x) \int e^{c (a+b x)} \text {csch}^7(a c+b c x) \, dx}{\sqrt {\sinh ^2(a c+b c x)}}\\ &=\frac {\sinh (a c+b c x) \text {Subst}\left (\int \frac {128 x^7}{\left (-1+x^2\right )^7} \, dx,x,e^{c (a+b x)}\right )}{b c \sqrt {\sinh ^2(a c+b c x)}}\\ &=\frac {(128 \sinh (a c+b c x)) \text {Subst}\left (\int \frac {x^7}{\left (-1+x^2\right )^7} \, dx,x,e^{c (a+b x)}\right )}{b c \sqrt {\sinh ^2(a c+b c x)}}\\ &=\frac {(64 \sinh (a c+b c x)) \text {Subst}\left (\int \frac {x^3}{(-1+x)^7} \, dx,x,e^{2 c (a+b x)}\right )}{b c \sqrt {\sinh ^2(a c+b c x)}}\\ &=\frac {(64 \sinh (a c+b c x)) \text {Subst}\left (\int \left (\frac {1}{(-1+x)^7}+\frac {3}{(-1+x)^6}+\frac {3}{(-1+x)^5}+\frac {1}{(-1+x)^4}\right ) \, dx,x,e^{2 c (a+b x)}\right )}{b c \sqrt {\sinh ^2(a c+b c x)}}\\ &=-\frac {32 \sinh (a c+b c x)}{3 b c \left (1-e^{2 c (a+b x)}\right )^6 \sqrt {\sinh ^2(a c+b c x)}}+\frac {192 \sinh (a c+b c x)}{5 b c \left (1-e^{2 c (a+b x)}\right )^5 \sqrt {\sinh ^2(a c+b c x)}}-\frac {48 \sinh (a c+b c x)}{b c \left (1-e^{2 c (a+b x)}\right )^4 \sqrt {\sinh ^2(a c+b c x)}}+\frac {64 \sinh (a c+b c x)}{3 b c \left (1-e^{2 c (a+b x)}\right )^3 \sqrt {\sinh ^2(a c+b c x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 84, normalized size = 0.42 \begin {gather*} -\frac {16 \left (-1+6 e^{2 c (a+b x)}-15 e^{4 c (a+b x)}+20 e^{6 c (a+b x)}\right ) \sinh (c (a+b x))}{15 b c \left (-1+e^{2 c (a+b x)}\right )^6 \sqrt {\sinh ^2(c (a+b x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^(c*(a + b*x))/(Sinh[a*c + b*c*x]^2)^(7/2),x]

[Out]

(-16*(-1 + 6*E^(2*c*(a + b*x)) - 15*E^(4*c*(a + b*x)) + 20*E^(6*c*(a + b*x)))*Sinh[c*(a + b*x)])/(15*b*c*(-1 +
 E^(2*c*(a + b*x)))^6*Sqrt[Sinh[c*(a + b*x)]^2])

________________________________________________________________________________________

Maple [A]
time = 10.59, size = 91, normalized size = 0.46

method result size
risch \(-\frac {16 \left (20 \,{\mathrm e}^{6 c \left (b x +a \right )}-15 \,{\mathrm e}^{4 c \left (b x +a \right )}+6 \,{\mathrm e}^{2 c \left (b x +a \right )}-1\right ) {\mathrm e}^{-c \left (b x +a \right )}}{15 c b \sqrt {\left ({\mathrm e}^{2 c \left (b x +a \right )}-1\right )^{2} {\mathrm e}^{-2 c \left (b x +a \right )}}\, \left ({\mathrm e}^{2 c \left (b x +a \right )}-1\right )^{5}}\) \(91\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(c*(b*x+a))/(sinh(b*c*x+a*c)^2)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-16/15/c/b*(20*exp(6*c*(b*x+a))-15*exp(4*c*(b*x+a))+6*exp(2*c*(b*x+a))-1)/((exp(2*c*(b*x+a))-1)^2*exp(-2*c*(b*
x+a)))^(1/2)/(exp(2*c*(b*x+a))-1)^5*exp(-c*(b*x+a))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 386 vs. \(2 (173) = 346\).
time = 0.49, size = 386, normalized size = 1.94 \begin {gather*} -\frac {64 \, e^{\left (6 \, b c x + 6 \, a c\right )}}{3 \, b c {\left (e^{\left (12 \, b c x + 12 \, a c\right )} - 6 \, e^{\left (10 \, b c x + 10 \, a c\right )} + 15 \, e^{\left (8 \, b c x + 8 \, a c\right )} - 20 \, e^{\left (6 \, b c x + 6 \, a c\right )} + 15 \, e^{\left (4 \, b c x + 4 \, a c\right )} - 6 \, e^{\left (2 \, b c x + 2 \, a c\right )} + 1\right )}} + \frac {16 \, e^{\left (4 \, b c x + 4 \, a c\right )}}{b c {\left (e^{\left (12 \, b c x + 12 \, a c\right )} - 6 \, e^{\left (10 \, b c x + 10 \, a c\right )} + 15 \, e^{\left (8 \, b c x + 8 \, a c\right )} - 20 \, e^{\left (6 \, b c x + 6 \, a c\right )} + 15 \, e^{\left (4 \, b c x + 4 \, a c\right )} - 6 \, e^{\left (2 \, b c x + 2 \, a c\right )} + 1\right )}} - \frac {32 \, e^{\left (2 \, b c x + 2 \, a c\right )}}{5 \, b c {\left (e^{\left (12 \, b c x + 12 \, a c\right )} - 6 \, e^{\left (10 \, b c x + 10 \, a c\right )} + 15 \, e^{\left (8 \, b c x + 8 \, a c\right )} - 20 \, e^{\left (6 \, b c x + 6 \, a c\right )} + 15 \, e^{\left (4 \, b c x + 4 \, a c\right )} - 6 \, e^{\left (2 \, b c x + 2 \, a c\right )} + 1\right )}} + \frac {16}{15 \, b c {\left (e^{\left (12 \, b c x + 12 \, a c\right )} - 6 \, e^{\left (10 \, b c x + 10 \, a c\right )} + 15 \, e^{\left (8 \, b c x + 8 \, a c\right )} - 20 \, e^{\left (6 \, b c x + 6 \, a c\right )} + 15 \, e^{\left (4 \, b c x + 4 \, a c\right )} - 6 \, e^{\left (2 \, b c x + 2 \, a c\right )} + 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(c*(b*x+a))/(sinh(b*c*x+a*c)^2)^(7/2),x, algorithm="maxima")

[Out]

-64/3*e^(6*b*c*x + 6*a*c)/(b*c*(e^(12*b*c*x + 12*a*c) - 6*e^(10*b*c*x + 10*a*c) + 15*e^(8*b*c*x + 8*a*c) - 20*
e^(6*b*c*x + 6*a*c) + 15*e^(4*b*c*x + 4*a*c) - 6*e^(2*b*c*x + 2*a*c) + 1)) + 16*e^(4*b*c*x + 4*a*c)/(b*c*(e^(1
2*b*c*x + 12*a*c) - 6*e^(10*b*c*x + 10*a*c) + 15*e^(8*b*c*x + 8*a*c) - 20*e^(6*b*c*x + 6*a*c) + 15*e^(4*b*c*x
+ 4*a*c) - 6*e^(2*b*c*x + 2*a*c) + 1)) - 32/5*e^(2*b*c*x + 2*a*c)/(b*c*(e^(12*b*c*x + 12*a*c) - 6*e^(10*b*c*x
+ 10*a*c) + 15*e^(8*b*c*x + 8*a*c) - 20*e^(6*b*c*x + 6*a*c) + 15*e^(4*b*c*x + 4*a*c) - 6*e^(2*b*c*x + 2*a*c) +
 1)) + 16/15/(b*c*(e^(12*b*c*x + 12*a*c) - 6*e^(10*b*c*x + 10*a*c) + 15*e^(8*b*c*x + 8*a*c) - 20*e^(6*b*c*x +
6*a*c) + 15*e^(4*b*c*x + 4*a*c) - 6*e^(2*b*c*x + 2*a*c) + 1))

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 592 vs. \(2 (173) = 346\).
time = 0.37, size = 592, normalized size = 2.97 \begin {gather*} -\frac {16 \, {\left (19 \, \cosh \left (b c x + a c\right )^{3} + 57 \, \cosh \left (b c x + a c\right ) \sinh \left (b c x + a c\right )^{2} + 21 \, \sinh \left (b c x + a c\right )^{3} + 21 \, {\left (3 \, \cosh \left (b c x + a c\right )^{2} - 1\right )} \sinh \left (b c x + a c\right ) - 9 \, \cosh \left (b c x + a c\right )\right )}}{15 \, {\left (b c \cosh \left (b c x + a c\right )^{9} + 9 \, b c \cosh \left (b c x + a c\right ) \sinh \left (b c x + a c\right )^{8} + b c \sinh \left (b c x + a c\right )^{9} - 6 \, b c \cosh \left (b c x + a c\right )^{7} + 6 \, {\left (6 \, b c \cosh \left (b c x + a c\right )^{2} - b c\right )} \sinh \left (b c x + a c\right )^{7} + 15 \, b c \cosh \left (b c x + a c\right )^{5} + 42 \, {\left (2 \, b c \cosh \left (b c x + a c\right )^{3} - b c \cosh \left (b c x + a c\right )\right )} \sinh \left (b c x + a c\right )^{6} + 3 \, {\left (42 \, b c \cosh \left (b c x + a c\right )^{4} - 42 \, b c \cosh \left (b c x + a c\right )^{2} + 5 \, b c\right )} \sinh \left (b c x + a c\right )^{5} - 19 \, b c \cosh \left (b c x + a c\right )^{3} + 3 \, {\left (42 \, b c \cosh \left (b c x + a c\right )^{5} - 70 \, b c \cosh \left (b c x + a c\right )^{3} + 25 \, b c \cosh \left (b c x + a c\right )\right )} \sinh \left (b c x + a c\right )^{4} + 3 \, {\left (28 \, b c \cosh \left (b c x + a c\right )^{6} - 70 \, b c \cosh \left (b c x + a c\right )^{4} + 50 \, b c \cosh \left (b c x + a c\right )^{2} - 7 \, b c\right )} \sinh \left (b c x + a c\right )^{3} + 9 \, b c \cosh \left (b c x + a c\right ) + 3 \, {\left (12 \, b c \cosh \left (b c x + a c\right )^{7} - 42 \, b c \cosh \left (b c x + a c\right )^{5} + 50 \, b c \cosh \left (b c x + a c\right )^{3} - 19 \, b c \cosh \left (b c x + a c\right )\right )} \sinh \left (b c x + a c\right )^{2} + 3 \, {\left (3 \, b c \cosh \left (b c x + a c\right )^{8} - 14 \, b c \cosh \left (b c x + a c\right )^{6} + 25 \, b c \cosh \left (b c x + a c\right )^{4} - 21 \, b c \cosh \left (b c x + a c\right )^{2} + 7 \, b c\right )} \sinh \left (b c x + a c\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(c*(b*x+a))/(sinh(b*c*x+a*c)^2)^(7/2),x, algorithm="fricas")

[Out]

-16/15*(19*cosh(b*c*x + a*c)^3 + 57*cosh(b*c*x + a*c)*sinh(b*c*x + a*c)^2 + 21*sinh(b*c*x + a*c)^3 + 21*(3*cos
h(b*c*x + a*c)^2 - 1)*sinh(b*c*x + a*c) - 9*cosh(b*c*x + a*c))/(b*c*cosh(b*c*x + a*c)^9 + 9*b*c*cosh(b*c*x + a
*c)*sinh(b*c*x + a*c)^8 + b*c*sinh(b*c*x + a*c)^9 - 6*b*c*cosh(b*c*x + a*c)^7 + 6*(6*b*c*cosh(b*c*x + a*c)^2 -
 b*c)*sinh(b*c*x + a*c)^7 + 15*b*c*cosh(b*c*x + a*c)^5 + 42*(2*b*c*cosh(b*c*x + a*c)^3 - b*c*cosh(b*c*x + a*c)
)*sinh(b*c*x + a*c)^6 + 3*(42*b*c*cosh(b*c*x + a*c)^4 - 42*b*c*cosh(b*c*x + a*c)^2 + 5*b*c)*sinh(b*c*x + a*c)^
5 - 19*b*c*cosh(b*c*x + a*c)^3 + 3*(42*b*c*cosh(b*c*x + a*c)^5 - 70*b*c*cosh(b*c*x + a*c)^3 + 25*b*c*cosh(b*c*
x + a*c))*sinh(b*c*x + a*c)^4 + 3*(28*b*c*cosh(b*c*x + a*c)^6 - 70*b*c*cosh(b*c*x + a*c)^4 + 50*b*c*cosh(b*c*x
 + a*c)^2 - 7*b*c)*sinh(b*c*x + a*c)^3 + 9*b*c*cosh(b*c*x + a*c) + 3*(12*b*c*cosh(b*c*x + a*c)^7 - 42*b*c*cosh
(b*c*x + a*c)^5 + 50*b*c*cosh(b*c*x + a*c)^3 - 19*b*c*cosh(b*c*x + a*c))*sinh(b*c*x + a*c)^2 + 3*(3*b*c*cosh(b
*c*x + a*c)^8 - 14*b*c*cosh(b*c*x + a*c)^6 + 25*b*c*cosh(b*c*x + a*c)^4 - 21*b*c*cosh(b*c*x + a*c)^2 + 7*b*c)*
sinh(b*c*x + a*c))

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(c*(b*x+a))/(sinh(b*c*x+a*c)**2)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 0.45, size = 161, normalized size = 0.81 \begin {gather*} -\frac {16 \, {\left (20 \, e^{\left (6 \, b c x + 6 \, a c\right )} \mathrm {sgn}\left (e^{\left (b c x + a c\right )} - e^{\left (-b c x - a c\right )}\right ) - 15 \, e^{\left (4 \, b c x + 4 \, a c\right )} \mathrm {sgn}\left (e^{\left (b c x + a c\right )} - e^{\left (-b c x - a c\right )}\right ) + 6 \, e^{\left (2 \, b c x + 2 \, a c\right )} \mathrm {sgn}\left (e^{\left (b c x + a c\right )} - e^{\left (-b c x - a c\right )}\right ) - \mathrm {sgn}\left (e^{\left (b c x + a c\right )} - e^{\left (-b c x - a c\right )}\right )\right )}}{15 \, b c {\left (e^{\left (2 \, b c x + 2 \, a c\right )} - 1\right )}^{6}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(c*(b*x+a))/(sinh(b*c*x+a*c)^2)^(7/2),x, algorithm="giac")

[Out]

-16/15*(20*e^(6*b*c*x + 6*a*c)*sgn(e^(b*c*x + a*c) - e^(-b*c*x - a*c)) - 15*e^(4*b*c*x + 4*a*c)*sgn(e^(b*c*x +
 a*c) - e^(-b*c*x - a*c)) + 6*e^(2*b*c*x + 2*a*c)*sgn(e^(b*c*x + a*c) - e^(-b*c*x - a*c)) - sgn(e^(b*c*x + a*c
) - e^(-b*c*x - a*c)))/(b*c*(e^(2*b*c*x + 2*a*c) - 1)^6)

________________________________________________________________________________________

Mupad [B]
time = 0.62, size = 353, normalized size = 1.77 \begin {gather*} \frac {128\,{\mathrm {e}}^{2\,a\,c+2\,b\,c\,x}\,\sqrt {{\left (\frac {{\mathrm {e}}^{a\,c+b\,c\,x}}{2}-\frac {{\mathrm {e}}^{-a\,c-b\,c\,x}}{2}\right )}^2}}{3\,b\,c\,\left ({\mathrm {e}}^{a\,c+b\,c\,x}-{\mathrm {e}}^{3\,a\,c+3\,b\,c\,x}\right )\,{\left ({\mathrm {e}}^{2\,a\,c+2\,b\,c\,x}-1\right )}^3}+\frac {96\,{\mathrm {e}}^{2\,a\,c+2\,b\,c\,x}\,\sqrt {{\left (\frac {{\mathrm {e}}^{a\,c+b\,c\,x}}{2}-\frac {{\mathrm {e}}^{-a\,c-b\,c\,x}}{2}\right )}^2}}{b\,c\,\left ({\mathrm {e}}^{a\,c+b\,c\,x}-{\mathrm {e}}^{3\,a\,c+3\,b\,c\,x}\right )\,{\left ({\mathrm {e}}^{2\,a\,c+2\,b\,c\,x}-1\right )}^4}+\frac {384\,{\mathrm {e}}^{2\,a\,c+2\,b\,c\,x}\,\sqrt {{\left (\frac {{\mathrm {e}}^{a\,c+b\,c\,x}}{2}-\frac {{\mathrm {e}}^{-a\,c-b\,c\,x}}{2}\right )}^2}}{5\,b\,c\,\left ({\mathrm {e}}^{a\,c+b\,c\,x}-{\mathrm {e}}^{3\,a\,c+3\,b\,c\,x}\right )\,{\left ({\mathrm {e}}^{2\,a\,c+2\,b\,c\,x}-1\right )}^5}+\frac {64\,{\mathrm {e}}^{2\,a\,c+2\,b\,c\,x}\,\sqrt {{\left (\frac {{\mathrm {e}}^{a\,c+b\,c\,x}}{2}-\frac {{\mathrm {e}}^{-a\,c-b\,c\,x}}{2}\right )}^2}}{3\,b\,c\,\left ({\mathrm {e}}^{a\,c+b\,c\,x}-{\mathrm {e}}^{3\,a\,c+3\,b\,c\,x}\right )\,{\left ({\mathrm {e}}^{2\,a\,c+2\,b\,c\,x}-1\right )}^6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(c*(a + b*x))/(sinh(a*c + b*c*x)^2)^(7/2),x)

[Out]

(128*exp(2*a*c + 2*b*c*x)*((exp(a*c + b*c*x)/2 - exp(- a*c - b*c*x)/2)^2)^(1/2))/(3*b*c*(exp(a*c + b*c*x) - ex
p(3*a*c + 3*b*c*x))*(exp(2*a*c + 2*b*c*x) - 1)^3) + (96*exp(2*a*c + 2*b*c*x)*((exp(a*c + b*c*x)/2 - exp(- a*c
- b*c*x)/2)^2)^(1/2))/(b*c*(exp(a*c + b*c*x) - exp(3*a*c + 3*b*c*x))*(exp(2*a*c + 2*b*c*x) - 1)^4) + (384*exp(
2*a*c + 2*b*c*x)*((exp(a*c + b*c*x)/2 - exp(- a*c - b*c*x)/2)^2)^(1/2))/(5*b*c*(exp(a*c + b*c*x) - exp(3*a*c +
 3*b*c*x))*(exp(2*a*c + 2*b*c*x) - 1)^5) + (64*exp(2*a*c + 2*b*c*x)*((exp(a*c + b*c*x)/2 - exp(- a*c - b*c*x)/
2)^2)^(1/2))/(3*b*c*(exp(a*c + b*c*x) - exp(3*a*c + 3*b*c*x))*(exp(2*a*c + 2*b*c*x) - 1)^6)

________________________________________________________________________________________