3.1.24 \(\int \frac {\cosh ^4(x)}{a+a \cosh (x)} \, dx\) [24]

Optimal. Leaf size=54 \[ -\frac {3 x}{2 a}+\frac {4 \sinh (x)}{a}-\frac {3 \cosh (x) \sinh (x)}{2 a}-\frac {\cosh ^3(x) \sinh (x)}{a+a \cosh (x)}+\frac {4 \sinh ^3(x)}{3 a} \]

[Out]

-3/2*x/a+4*sinh(x)/a-3/2*cosh(x)*sinh(x)/a-cosh(x)^3*sinh(x)/(a+a*cosh(x))+4/3*sinh(x)^3/a

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.385, Rules used = {2846, 2827, 2715, 8, 2713} \begin {gather*} -\frac {3 x}{2 a}+\frac {4 \sinh ^3(x)}{3 a}+\frac {4 \sinh (x)}{a}-\frac {\sinh (x) \cosh ^3(x)}{a \cosh (x)+a}-\frac {3 \sinh (x) \cosh (x)}{2 a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cosh[x]^4/(a + a*Cosh[x]),x]

[Out]

(-3*x)/(2*a) + (4*Sinh[x])/a - (3*Cosh[x]*Sinh[x])/(2*a) - (Cosh[x]^3*Sinh[x])/(a + a*Cosh[x]) + (4*Sinh[x]^3)
/(3*a)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2713

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2846

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(
b*c - a*d))*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n - 1)/(a*f*(a + b*Sin[e + f*x]))), x] - Dist[d/(a*b), Int[(c
+ d*Sin[e + f*x])^(n - 2)*Simp[b*d*(n - 1) - a*c*n + (b*c*(n - 1) - a*d*n)*Sin[e + f*x], x], x], x] /; FreeQ[{
a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && (IntegerQ
[2*n] || EqQ[c, 0])

Rubi steps

\begin {align*} \int \frac {\cosh ^4(x)}{a+a \cosh (x)} \, dx &=-\frac {\cosh ^3(x) \sinh (x)}{a+a \cosh (x)}-\frac {\int \cosh ^2(x) (3 a-4 a \cosh (x)) \, dx}{a^2}\\ &=-\frac {\cosh ^3(x) \sinh (x)}{a+a \cosh (x)}-\frac {3 \int \cosh ^2(x) \, dx}{a}+\frac {4 \int \cosh ^3(x) \, dx}{a}\\ &=-\frac {3 \cosh (x) \sinh (x)}{2 a}-\frac {\cosh ^3(x) \sinh (x)}{a+a \cosh (x)}+\frac {(4 i) \text {Subst}\left (\int \left (1-x^2\right ) \, dx,x,-i \sinh (x)\right )}{a}-\frac {3 \int 1 \, dx}{2 a}\\ &=-\frac {3 x}{2 a}+\frac {4 \sinh (x)}{a}-\frac {3 \cosh (x) \sinh (x)}{2 a}-\frac {\cosh ^3(x) \sinh (x)}{a+a \cosh (x)}+\frac {4 \sinh ^3(x)}{3 a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 53, normalized size = 0.98 \begin {gather*} \frac {\text {sech}\left (\frac {x}{2}\right ) \left (-36 x \cosh \left (\frac {x}{2}\right )+45 \sinh \left (\frac {x}{2}\right )+18 \sinh \left (\frac {3 x}{2}\right )-2 \sinh \left (\frac {5 x}{2}\right )+\sinh \left (\frac {7 x}{2}\right )\right )}{24 a} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cosh[x]^4/(a + a*Cosh[x]),x]

[Out]

(Sech[x/2]*(-36*x*Cosh[x/2] + 45*Sinh[x/2] + 18*Sinh[(3*x)/2] - 2*Sinh[(5*x)/2] + Sinh[(7*x)/2]))/(24*a)

________________________________________________________________________________________

Maple [A]
time = 0.44, size = 86, normalized size = 1.59

method result size
risch \(-\frac {3 x}{2 a}+\frac {{\mathrm e}^{3 x}}{24 a}-\frac {{\mathrm e}^{2 x}}{8 a}+\frac {7 \,{\mathrm e}^{x}}{8 a}-\frac {7 \,{\mathrm e}^{-x}}{8 a}+\frac {{\mathrm e}^{-2 x}}{8 a}-\frac {{\mathrm e}^{-3 x}}{24 a}-\frac {2}{\left ({\mathrm e}^{x}+1\right ) a}\) \(71\)
default \(\frac {\tanh \left (\frac {x}{2}\right )-\frac {1}{3 \left (\tanh \left (\frac {x}{2}\right )-1\right )^{3}}-\frac {1}{\left (\tanh \left (\frac {x}{2}\right )-1\right )^{2}}-\frac {5}{2 \left (\tanh \left (\frac {x}{2}\right )-1\right )}+\frac {3 \ln \left (\tanh \left (\frac {x}{2}\right )-1\right )}{2}-\frac {1}{3 \left (\tanh \left (\frac {x}{2}\right )+1\right )^{3}}+\frac {1}{\left (\tanh \left (\frac {x}{2}\right )+1\right )^{2}}-\frac {5}{2 \left (\tanh \left (\frac {x}{2}\right )+1\right )}-\frac {3 \ln \left (\tanh \left (\frac {x}{2}\right )+1\right )}{2}}{a}\) \(86\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(x)^4/(a+a*cosh(x)),x,method=_RETURNVERBOSE)

[Out]

1/a*(tanh(1/2*x)-1/3/(tanh(1/2*x)-1)^3-1/(tanh(1/2*x)-1)^2-5/2/(tanh(1/2*x)-1)+3/2*ln(tanh(1/2*x)-1)-1/3/(tanh
(1/2*x)+1)^3+1/(tanh(1/2*x)+1)^2-5/2/(tanh(1/2*x)+1)-3/2*ln(tanh(1/2*x)+1))

________________________________________________________________________________________

Maxima [A]
time = 0.27, size = 66, normalized size = 1.22 \begin {gather*} -\frac {3 \, x}{2 \, a} - \frac {21 \, e^{\left (-x\right )} - 3 \, e^{\left (-2 \, x\right )} + e^{\left (-3 \, x\right )}}{24 \, a} - \frac {2 \, e^{\left (-x\right )} - 18 \, e^{\left (-2 \, x\right )} - 69 \, e^{\left (-3 \, x\right )} - 1}{24 \, {\left (a e^{\left (-3 \, x\right )} + a e^{\left (-4 \, x\right )}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)^4/(a+a*cosh(x)),x, algorithm="maxima")

[Out]

-3/2*x/a - 1/24*(21*e^(-x) - 3*e^(-2*x) + e^(-3*x))/a - 1/24*(2*e^(-x) - 18*e^(-2*x) - 69*e^(-3*x) - 1)/(a*e^(
-3*x) + a*e^(-4*x))

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 100 vs. \(2 (48) = 96\).
time = 0.37, size = 100, normalized size = 1.85 \begin {gather*} \frac {\cosh \left (x\right )^{4} + {\left (4 \, \cosh \left (x\right ) - 1\right )} \sinh \left (x\right )^{3} + \sinh \left (x\right )^{4} - 3 \, \cosh \left (x\right )^{3} + {\left (6 \, \cosh \left (x\right )^{2} - 9 \, \cosh \left (x\right ) + 20\right )} \sinh \left (x\right )^{2} - 3 \, {\left (12 \, x - 1\right )} \cosh \left (x\right ) + 20 \, \cosh \left (x\right )^{2} + {\left (4 \, \cosh \left (x\right )^{3} - 3 \, \cosh \left (x\right )^{2} - 36 \, x + 32 \, \cosh \left (x\right ) + 39\right )} \sinh \left (x\right ) - 36 \, x - 69}{24 \, {\left (a \cosh \left (x\right ) + a \sinh \left (x\right ) + a\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)^4/(a+a*cosh(x)),x, algorithm="fricas")

[Out]

1/24*(cosh(x)^4 + (4*cosh(x) - 1)*sinh(x)^3 + sinh(x)^4 - 3*cosh(x)^3 + (6*cosh(x)^2 - 9*cosh(x) + 20)*sinh(x)
^2 - 3*(12*x - 1)*cosh(x) + 20*cosh(x)^2 + (4*cosh(x)^3 - 3*cosh(x)^2 - 36*x + 32*cosh(x) + 39)*sinh(x) - 36*x
 - 69)/(a*cosh(x) + a*sinh(x) + a)

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 337 vs. \(2 (49) = 98\).
time = 0.72, size = 337, normalized size = 6.24 \begin {gather*} - \frac {9 x \tanh ^{6}{\left (\frac {x}{2} \right )}}{6 a \tanh ^{6}{\left (\frac {x}{2} \right )} - 18 a \tanh ^{4}{\left (\frac {x}{2} \right )} + 18 a \tanh ^{2}{\left (\frac {x}{2} \right )} - 6 a} + \frac {27 x \tanh ^{4}{\left (\frac {x}{2} \right )}}{6 a \tanh ^{6}{\left (\frac {x}{2} \right )} - 18 a \tanh ^{4}{\left (\frac {x}{2} \right )} + 18 a \tanh ^{2}{\left (\frac {x}{2} \right )} - 6 a} - \frac {27 x \tanh ^{2}{\left (\frac {x}{2} \right )}}{6 a \tanh ^{6}{\left (\frac {x}{2} \right )} - 18 a \tanh ^{4}{\left (\frac {x}{2} \right )} + 18 a \tanh ^{2}{\left (\frac {x}{2} \right )} - 6 a} + \frac {9 x}{6 a \tanh ^{6}{\left (\frac {x}{2} \right )} - 18 a \tanh ^{4}{\left (\frac {x}{2} \right )} + 18 a \tanh ^{2}{\left (\frac {x}{2} \right )} - 6 a} + \frac {6 \tanh ^{7}{\left (\frac {x}{2} \right )}}{6 a \tanh ^{6}{\left (\frac {x}{2} \right )} - 18 a \tanh ^{4}{\left (\frac {x}{2} \right )} + 18 a \tanh ^{2}{\left (\frac {x}{2} \right )} - 6 a} - \frac {48 \tanh ^{5}{\left (\frac {x}{2} \right )}}{6 a \tanh ^{6}{\left (\frac {x}{2} \right )} - 18 a \tanh ^{4}{\left (\frac {x}{2} \right )} + 18 a \tanh ^{2}{\left (\frac {x}{2} \right )} - 6 a} + \frac {50 \tanh ^{3}{\left (\frac {x}{2} \right )}}{6 a \tanh ^{6}{\left (\frac {x}{2} \right )} - 18 a \tanh ^{4}{\left (\frac {x}{2} \right )} + 18 a \tanh ^{2}{\left (\frac {x}{2} \right )} - 6 a} - \frac {24 \tanh {\left (\frac {x}{2} \right )}}{6 a \tanh ^{6}{\left (\frac {x}{2} \right )} - 18 a \tanh ^{4}{\left (\frac {x}{2} \right )} + 18 a \tanh ^{2}{\left (\frac {x}{2} \right )} - 6 a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)**4/(a+a*cosh(x)),x)

[Out]

-9*x*tanh(x/2)**6/(6*a*tanh(x/2)**6 - 18*a*tanh(x/2)**4 + 18*a*tanh(x/2)**2 - 6*a) + 27*x*tanh(x/2)**4/(6*a*ta
nh(x/2)**6 - 18*a*tanh(x/2)**4 + 18*a*tanh(x/2)**2 - 6*a) - 27*x*tanh(x/2)**2/(6*a*tanh(x/2)**6 - 18*a*tanh(x/
2)**4 + 18*a*tanh(x/2)**2 - 6*a) + 9*x/(6*a*tanh(x/2)**6 - 18*a*tanh(x/2)**4 + 18*a*tanh(x/2)**2 - 6*a) + 6*ta
nh(x/2)**7/(6*a*tanh(x/2)**6 - 18*a*tanh(x/2)**4 + 18*a*tanh(x/2)**2 - 6*a) - 48*tanh(x/2)**5/(6*a*tanh(x/2)**
6 - 18*a*tanh(x/2)**4 + 18*a*tanh(x/2)**2 - 6*a) + 50*tanh(x/2)**3/(6*a*tanh(x/2)**6 - 18*a*tanh(x/2)**4 + 18*
a*tanh(x/2)**2 - 6*a) - 24*tanh(x/2)/(6*a*tanh(x/2)**6 - 18*a*tanh(x/2)**4 + 18*a*tanh(x/2)**2 - 6*a)

________________________________________________________________________________________

Giac [A]
time = 0.40, size = 70, normalized size = 1.30 \begin {gather*} -\frac {3 \, x}{2 \, a} - \frac {{\left (69 \, e^{\left (3 \, x\right )} + 18 \, e^{\left (2 \, x\right )} - 2 \, e^{x} + 1\right )} e^{\left (-3 \, x\right )}}{24 \, a {\left (e^{x} + 1\right )}} + \frac {a^{2} e^{\left (3 \, x\right )} - 3 \, a^{2} e^{\left (2 \, x\right )} + 21 \, a^{2} e^{x}}{24 \, a^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)^4/(a+a*cosh(x)),x, algorithm="giac")

[Out]

-3/2*x/a - 1/24*(69*e^(3*x) + 18*e^(2*x) - 2*e^x + 1)*e^(-3*x)/(a*(e^x + 1)) + 1/24*(a^2*e^(3*x) - 3*a^2*e^(2*
x) + 21*a^2*e^x)/a^3

________________________________________________________________________________________

Mupad [B]
time = 0.96, size = 70, normalized size = 1.30 \begin {gather*} \frac {{\mathrm {e}}^{-2\,x}}{8\,a}-\frac {7\,{\mathrm {e}}^{-x}}{8\,a}-\frac {{\mathrm {e}}^{2\,x}}{8\,a}-\frac {{\mathrm {e}}^{-3\,x}}{24\,a}+\frac {{\mathrm {e}}^{3\,x}}{24\,a}-\frac {3\,x}{2\,a}-\frac {2}{a\,\left ({\mathrm {e}}^x+1\right )}+\frac {7\,{\mathrm {e}}^x}{8\,a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(x)^4/(a + a*cosh(x)),x)

[Out]

exp(-2*x)/(8*a) - (7*exp(-x))/(8*a) - exp(2*x)/(8*a) - exp(-3*x)/(24*a) + exp(3*x)/(24*a) - (3*x)/(2*a) - 2/(a
*(exp(x) + 1)) + (7*exp(x))/(8*a)

________________________________________________________________________________________